LIST OF FIGURES

Figure 1.1 Schematic Block Diagram of PMBLDC Motor
Figure 1.2 Schematic Block Diagram of PMSM Drive
Figure 2.1 Armature waveforms for sinusoidally excited and square wave
Figure 2.2 Second Quadrant B-H characteristics of Permanent Magnets
Figure 2.3 Incremental and absolute encoders (a) disk of an incremental encoder, (b) Quadrature output signals, (c) disk of an absolute encoder, (d) Absolute encoder output signals
Figure 2.4 Brushless resolver.1-stator, 2-rotor, 3-rotary transformer
Figure 2.5 Principle of operation of a rotary resolver: (a) winding Configuration,(b) resolver output waves and 4-pole voltages. The interval \(0 \leq \theta \leq 720^\circ\) corresponds to one revolution
Figure 2.6 Flow Chart of ‘SUMT’ For PM Motor Design Optimization
Figure 2.7 Flow Chart of ‘Rosen Brock’s method’ For PM Motor Design Optimization
Figure 3.1 Schematic Block Diagram of PMBLDC Motor
Figure 3.2 Block Diagram representation of PI Speed controller
Figure 3.3 Block Diagram representation of PID Speed Controller
Figure 3.4 Block Diagram representation of Sliding Mode Controller
Figure 3.5 Basic diagram of Fuzzy Logic Controller
Figure 3.6 Membership functions used in fuzzy logic controller
Figure 3.7(a) Basic control structure of the fuzzy Precompensated PI controller
Figure 3.7(b) Basic control structure of the fuzzy Precompensated PI controller
Figure 3.8 Membership function for speed error
Figure 3.9 Block diagram representation of Self-Organizing Fuzzy Logic Controller
Figure 3.10 Basic Diagram of Gain Scheduling Speed Controller for PMBLDC Motor
Figure 3.11 Block diagram hybrid FP+ID of PMBLDC motor
Figure 3.12 Back EMF of PMBLDC Motor drive
Figure 3.13 Inverter Circuit of PMBLDC Motor drive
Figure 3.14 Zero crossing instants of the back emf and the Corresponding Position Signals
Figure 4.1 Schematic Diagram of PMSM motor Drive
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Schematic Block Diagram of PMSM Drive</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Proportional type of controller</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Proportional and Derivative controller</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Proportional and Integral controller</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>Proportional plus Derivative plus Integral (PID) controller</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Motor Current i_a</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>Motor Current i_b</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Motor Current i_c</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Rotor speed Vs time plot during starting</td>
<td>89</td>
</tr>
<tr>
<td>5.5</td>
<td>Electromagnetic Torque Vs time plot during starting</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>Motor winding Voltage Vs time plot during starting</td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>Motor Current i_a</td>
<td>91</td>
</tr>
<tr>
<td>5.8</td>
<td>Motor Current i_b</td>
<td>91</td>
</tr>
<tr>
<td>5.9</td>
<td>Motor Current i_c</td>
<td>91</td>
</tr>
<tr>
<td>5.10</td>
<td>Rotor speed Vs time plot during Reversal</td>
<td>92</td>
</tr>
<tr>
<td>5.11</td>
<td>Electromagnetic Torque Vs time plot during Reversal</td>
<td>92</td>
</tr>
<tr>
<td>5.12</td>
<td>Motor winding Voltage Vs time plot during Reversal</td>
<td>93</td>
</tr>
<tr>
<td>5.13</td>
<td>Motor Current i_a</td>
<td>93</td>
</tr>
<tr>
<td>5.14</td>
<td>Motor Current i_b</td>
<td>94</td>
</tr>
<tr>
<td>5.15</td>
<td>Motor Current i_c</td>
<td>94</td>
</tr>
<tr>
<td>5.16</td>
<td>Rotor speed Vs time plot during Load Perturbations</td>
<td>94</td>
</tr>
<tr>
<td>5.17</td>
<td>Electromagnetic Torque Vs time plot during Load Perturbations</td>
<td>95</td>
</tr>
<tr>
<td>5.18</td>
<td>Motor winding Voltage Vs time plot during Load Perturbations</td>
<td>95</td>
</tr>
<tr>
<td>5.19</td>
<td>Motor Current i_a</td>
<td>96</td>
</tr>
<tr>
<td>5.20</td>
<td>Motor Current i_b</td>
<td>96</td>
</tr>
<tr>
<td>5.21</td>
<td>Motor Current i_c</td>
<td>96</td>
</tr>
<tr>
<td>5.22</td>
<td>Rotor speed Vs time plot during Starting</td>
<td>97</td>
</tr>
<tr>
<td>5.23</td>
<td>Electromagnetic Torque Vs time plot during Starting</td>
<td>97</td>
</tr>
<tr>
<td>5.24</td>
<td>Motor winding Voltage Vs time plot during Starting</td>
<td>98</td>
</tr>
<tr>
<td>5.25</td>
<td>Motor Current i_a</td>
<td>98</td>
</tr>
<tr>
<td>5.26</td>
<td>Motor Current i_b</td>
<td>99</td>
</tr>
<tr>
<td>5.27</td>
<td>Motor Current i_c</td>
<td>99</td>
</tr>
</tbody>
</table>

xxii
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.28</td>
<td>Rotor speed Vs time plot during Reversal</td>
<td>99</td>
</tr>
<tr>
<td>5.29</td>
<td>Electromagnetic Torque Vs time plot during Reversal</td>
<td>100</td>
</tr>
<tr>
<td>5.30</td>
<td>Motor winding Voltage Vs time plot during Reversal</td>
<td>100</td>
</tr>
<tr>
<td>5.31</td>
<td>Motor Current ‘i_a’</td>
<td>101</td>
</tr>
<tr>
<td>5.32</td>
<td>Motor Current ‘i_b’</td>
<td>101</td>
</tr>
<tr>
<td>5.33</td>
<td>Motor Current ‘i_c’</td>
<td>101</td>
</tr>
<tr>
<td>5.34</td>
<td>Rotor speed Vs time plot during Load Perturbations</td>
<td>102</td>
</tr>
<tr>
<td>5.35</td>
<td>Electromagnetic Torque Vs time plot during Load Perturbations</td>
<td>102</td>
</tr>
<tr>
<td>5.36</td>
<td>Motor winding Voltage Vs time plot during Load Perturbations</td>
<td>103</td>
</tr>
<tr>
<td>5.37</td>
<td>Motor Current ‘i_a’</td>
<td>103</td>
</tr>
<tr>
<td>5.38</td>
<td>Motor Current ‘i_b’</td>
<td>104</td>
</tr>
<tr>
<td>5.39</td>
<td>Motor Current ‘i_c’</td>
<td>104</td>
</tr>
<tr>
<td>5.40</td>
<td>Rotor speed Vs time plot during Starting</td>
<td>104</td>
</tr>
<tr>
<td>5.41</td>
<td>Electromagnetic Torque Vs time plot during Starting</td>
<td>105</td>
</tr>
<tr>
<td>5.42</td>
<td>Motor winding Voltage Vs time plot during Starting</td>
<td>105</td>
</tr>
<tr>
<td>5.43</td>
<td>Motor Current ‘i_a’</td>
<td>106</td>
</tr>
<tr>
<td>5.44</td>
<td>Motor Current ‘i_b’</td>
<td>106</td>
</tr>
<tr>
<td>5.45</td>
<td>Motor Current ‘i_c’</td>
<td>106</td>
</tr>
<tr>
<td>5.46</td>
<td>Rotor speed Vs time plot during Reversal</td>
<td>107</td>
</tr>
<tr>
<td>5.47</td>
<td>Electromagnetic Torque Vs time plot during Reversal</td>
<td>108</td>
</tr>
<tr>
<td>5.48</td>
<td>Motor winding Voltage Vs time plot during Reversal</td>
<td>108</td>
</tr>
<tr>
<td>5.49</td>
<td>Motor Current ‘i_a’</td>
<td>109</td>
</tr>
<tr>
<td>5.50</td>
<td>Motor Current ‘i_b’</td>
<td>109</td>
</tr>
<tr>
<td>5.51</td>
<td>Motor Current ‘i_c’</td>
<td>109</td>
</tr>
<tr>
<td>5.52</td>
<td>Rotor speed Vs time plot during Load Perturbations</td>
<td>110</td>
</tr>
<tr>
<td>5.53</td>
<td>Electromagnetic Torque Vs time plot during Load Perturbations</td>
<td>110</td>
</tr>
<tr>
<td>5.54</td>
<td>Motor winding Voltage Vs time plot during Load Perturbations</td>
<td>111</td>
</tr>
<tr>
<td>5.55</td>
<td>Motor Current ‘i_a’</td>
<td>112</td>
</tr>
<tr>
<td>5.56</td>
<td>Motor Current ‘i_b’</td>
<td>112</td>
</tr>
<tr>
<td>5.57</td>
<td>Motor Current ‘i_c’</td>
<td>112</td>
</tr>
<tr>
<td>5.58</td>
<td>Rotor speed Vs time plot during Starting</td>
<td>113</td>
</tr>
</tbody>
</table>
Figure 5.59 Electromagnetic Torque Vs time plot during Starting 113
Figure 5.60 Motor winding Voltage Vs time plot during Starting 114
Figure 5.61 Motor Current ‘i_a’ 114
Figure 5.62 Motor Current ‘i_b’ 115
Figure 5.63 Motor Current ‘i_c’ 115
Figure 5.64 Rotor speed Vs time plot during Reversal 116
Figure 5.65 Electromagnetic Torque Vs time plot during Reversal 116
Figure 5.66 Motor winding Voltage Vs time plot during Reversal 117
Figure 5.67 Motor Current ‘i_a’ 117
Figure 5.68 Motor Current ‘i_b’ 118
Figure 5.69 Motor Current ‘i_c’ 118
Figure 5.70 Rotor speed Vs time plot during Load Perturbations 119
Figure 5.71 Electromagnetic Torque Vs time plot during Load Perturbations 119
Figure 5.72 Motor winding Voltage Vs time plot during Load Perturbations 120
Figure 5.73 Motor Current ‘i_a’ 120
Figure 5.74 Motor Current ‘i_b’ 121
Figure 5.75 Motor Current ‘i_c’ 121
Figure 5.76 Rotor speed Vs time plot during Starting 122
Figure 5.77 Electromagnetic Torque Vs time plot during Starting 122
Figure 5.78 Motor winding Voltage Vs time plot during Starting 123
Figure 5.79 Motor Current ‘i_a’ 123
Figure 5.80 Motor Current ‘i_b’ 124
Figure 5.81 Motor Current ‘i_c’ 124
Figure 5.82 Rotor speed Vs time plot during Reversal 125
Figure 5.83 Electromagnetic Torque Vs time plot during Reversal 125
Figure 5.84 Motor winding Voltage Vs time plot during Reversal 126
Figure 5.85 Motor Current ‘i_a’ 126
Figure 5.86 Motor Current ‘i_b’ 127
Figure 5.87 Motor Current ‘i_c’ 127
Figure 5.88 Rotor speed Vs time plot during Load Perturbations 128
Figure 5.89 Electromagnetic Torque Vs time plot during Load Perturbations 128
Figure 5.90 Motor winding voltage Vs time plot during load perturbations 129
Figure 5.91 Motor Current ‘iₐ’ 130
Figure 5.92 Motor Current ‘iₖ’ 130
Figure 5.93 Motor Current ‘iₖ’ 130
Figure 5.94 Rotor speed Vs time plot during Starting 131
Figure 5.95 Electromagnetic Torque Vs time plot during Starting 131
Figure 5.96 Motor winding Voltage Vs time plot during Starting 132
Figure 5.97 Motor Current ‘iₐ’ 132
Figure 5.98 Motor Current ‘iₖ’ 133
Figure 5.99 Motor Current ‘iₖ’ 133
Figure 5.100 Rotor speed Vs time plot during Reversal 133
Figure 5.101 Electromagnetic Torque Vs time plot during Reversal 134
Figure 5.102 Motor winding Voltage Vs time plot during Reversal 134
Figure 5.103 Motor Current ‘iₐ’ 135
Figure 5.104 Motor Current ‘iₖ’ 135
Figure 5.105 Motor Current ‘iₖ’ 136
Figure 5.106 Rotor speed Vs time plot during Load Perturbations 136
Figure 5.107 Electromagnetic Torque Vs time plot during Load Perturbations 137
Figure 5.108 Motor winding Voltage Vs time plot during Load Perturbations 137
Figure 5.109 Motor Current ‘iₐ’ 138
Figure 5.110 Motor Current ‘iₖ’ 138
Figure 5.111 Motor Current ‘iₖ’ 139
Figure 5.112 Rotor speed Vs time plot during Starting 139
Figure 5.113 Electromagnetic Torque Vs time plot during Starting 140
Figure 5.114 Motor winding Voltage Vs time plot during Starting 140
Figure 5.115 Motor Current ‘iₐ’ 141
Figure 5.116 Motor Current ‘iₖ’ 141
Figure 5.117 Motor Current ‘iₖ’ 141
Figure 5.118 Rotor speed Vs time plot during Reversal 142
Figure 5.119 Electromagnetic Torque Vs time plot during Reversal 142
Figure 5.120 Motor winding Voltage Vs time plot during Reversal 143
Figure 5.121 Motor Current ‘iₐ’ 143
Figure 5.122 Motor Current ‘iₖ’ 144
Figure 5.123 Motor Current ‘i’
Figure 5.124 Rotor speed Vs time plot during Load Perturbations
Figure 5.125 Electromagnetic Torque Vs time plot during Load Perturbations
Figure 5.126 Motor winding Voltage Vs time plot during Load Perturbations
Figure 5.127 Motor Current ‘i_a’
Figure 5.128 Motor Current ‘i_b’
Figure 5.129 Motor Current ‘i_c’
Figure 5.130 Rotor speed Vs time plot during Starting
Figure 5.131 Electromagnetic Torque Vs time plot during Starting
Figure 5.132 Motor winding Voltage Vs time plot during Starting
Figure 5.133 Motor Current ‘i_a’
Figure 5.134 Motor Current ‘i_b’
Figure 5.135 Motor Current ‘i_c’
Figure 5.136 Rotor speed Vs time plot during Reversal
Figure 5.137 Electromagnetic Torque Vs time plot during Reversal
Figure 5.138 Motor winding Voltage Vs time plot during Reversal
Figure 5.139 Motor Current ‘i_a’
Figure 5.140 Motor Current ‘i_b’
Figure 5.141 Motor Current ‘i_c’
Figure 5.142 Rotor speed Vs time plot during Load Perturbations
Figure 5.143 Electromagnetic Torque Vs time plot during Load Perturbations
Figure 5.144 Motor winding Voltage Vs time plot during Load Perturbations
Figure 5.145 Motor Current ‘i_a’
Figure 5.146 Motor Current ‘i_b’
Figure 5.147 Motor Current ‘i_c’
Figure 5.148 Rotor speed Vs time plot during Starting
Figure 5.149 Electromagnetic Torque Vs time plot during Starting
Figure 5.150 Motor winding Voltage Vs time plot during Starting
Figure 5.151 Motor Current ‘i_a’
Figure 5.152 Motor Current ‘i_b’
Figure 5.153 Motor Current ‘i_c’

xxvi
Figure 5.154 Rotor speed Vs time plot during Reversal 160
Figure 5.155 Electromagnetic Torque Vs time plot during Reversal 160
Figure 5.156 Motor winding Voltage Vs time plot during Reversal 161
Figure 5.157 Motor Current ‘i_a’ 161
Figure 5.158 Motor Current ‘i_b’ 162
Figure 5.159 Motor Current ‘i_c’ 162
Figure 5.160 Rotor speed Vs time plot during Load Perturbations 163
Figure 5.161 Electromagnetic Torque Vs time plot during Load Perturbations 163
Figure 5.162 Motor winding Voltage Vs time plot during Load Perturbations 164
Figure 5.163 Response of Sensorless Control of PMBLDC Motor Current ‘i_a’ during starting 170
Figure 5.164 Response of Sensorless Control of PMBLDC Motor Current ‘i_b’ during starting 170
Figure 5.165 Response of Sensorless Control of PMBLDC Motor Current ‘i_c’ during starting 170
Figure 5.166 Rotor Speed Vs time plot during Starting 171
Figure 5.167 Electromagnetic Torque Vs time plot during Starting 171
Figure 5.168 Motor back emf and its corresponding position signal 172
Figure 5.169 Motor back emf and its corresponding three Position Signal 172
Figure 6.1 Response of Motor Current (i_a) with PI Controller 175
Figure 6.2 Response of Motor Current (i_b) with PI Controller 175
Figure 6.3 Response of Motor Current (i_c) with PI Controller 176
Figure 6.4: Response of Motor Currents (i_a, i_b and i_c) with PI Controller 176
Figure 6.5 Rotor speed Vs time plot during starting 176
Figure 6.6 Electromagnetic Torque Vs time plot during starting 177
Figure 6.7 Motor winding Voltage Vs time plot during starting 177
Figure 6.8 Response of Motor Current (i_a) during Reversal 178
Figure 6.9 Response of Motor Current (i_b) during Reversal 178
Figure 6.10 Response Motor Current (i_c) during Reversal 178
Figure 6.11 Response of Motor Currents (i_a, i_b and i_c) during Reversal 179
Figure 6.12 Rotor speed Vs time plot during Reversal 179
Figure 6.13 Electromagnetic Torque Vs time plot during Reversal 180
Figure 6.14 Motor winding Voltage Vs time plot during Reversal 180
Figure 6.15 Response of Motor Current (i_a) during load Perturbations 181
Figure 6.16 Response of Motor Current (i_b) during load Perturbations 181
Figure 6.17 Response of Motor Current (i_c) during load Perturbations 181
Figure 6.18 Response of Motor Currents (i_a, i_b and i_c) during load Perturbations 182
Figure 6.19 Rotor speed Vs time plot during load Perturbations 182
Figure 6.20 Electromagnetic Torque Vs time plot during load Perturbations 183
Figure 6.21 Motor winding Voltage Vs time plot during load Perturbations 183
Figure 6.22 Response of Motor Current (i_a) with PI Controller 184
Figure 6.23 Response of Motor Current (i_b) with PI Controller 184
Figure 6.24 Response of Motor Current (i_c) with PI Controller 184
Figure 6.25 Response of Motor Currents (i_a, i_b and i_c) with PI Controller 185
Figure 6.26 Rotor speed Vs time plot during starting 185
Figure 6.27 Electromagnetic Torque Vs time plot during starting 186
Figure 6.28 Motor winding Voltage Vs time plot during starting 186
Figure 6.29 Response of Motor Current (i_a) during Reversal 187
Figure 6.30 Response of Motor Current (i_b) during Reversal 187
Figure 6.31 Response Motor Current (i_c) during Reversal 187
Figure 6.32 Response of Motor Currents (i_a, i_b and i_c) during Reversal 188
Figure 6.33 Rotor speed Vs time plot during Reversal 188
Figure 6.34 Electromagnetic Torque Vs time plot during Reversal 189
Figure 6.35 Motor winding Voltage Vs time plot during Reversal 189
Figure 6.36 Response of Motor Current (i_a) during load Perturbations 190
Figure 6.37 Response of Motor Current (i_b) during load Perturbations 190
Figure 6.38 Response of Motor Current (i_c) during load Perturbations 190
Figure 6.39 Response of Motor Currents (i_a, i_b and i_c) during Load Perturbations 191
Figure 6.40 Rotor speed Vs time plot during load Perturbations 191
Figure 6.41 Electromagnetic Torque Vs time plot during load Perturbations 192
Figure 6.42 Motor winding Voltage Vs time plot during load Perturbations 192