CHAPTER 3
MINIMUM SPANNING TREE BASED CLUSTERING ALGORITHMS

3.1 Introduction

In this chapter, we present two clustering algorithms based on the minimum spanning tree. The first algorithm is designed using coefficient of variation. The second clustering algorithm is developed based on the dynamic validity index. Both the algorithms are experimented on various synthetic as well as biological data and the results are compared with some existing clustering algorithms using dynamic validity index and runtime.

3.2 Terminologies

We first describe some terminologies which are useful to understand the proposed algorithms as follows.

3.2.1 Minimum Spanning Tree

Minimum Spanning Tree (MST) [148] is a sub-graph that spans over all the vertices of a given graph without any cycle and has minimum sum of weights over all the included edges. In MST-based clustering, the weight for each edge is considered as the Euclidean distance between the end points forming that edge. As a result, any edge that connects two sub-trees in the MST must be the shortest. In such clustering methods, inconsistent edges which are unusually longer are removed from the MST. The connected components of the MST obtained by removing these edges are treated as the clusters. Elimination of the longest edge results into two-group clustering. Removal of the next longest edge results into three-group clustering and so on [27].
3.2.2 Coefficient of Variation

As an example, five-group clustering after removal of four successive longest edges is shown in Figure 3.1.

![Figure 3.1: MST-based clustering](image)

(a) Minimum spanning tree representation of the given points, dashed lines indicate the inconsistent edges; (b) five-group clustering after the removal of four successive longest edges

3.2.2 Coefficient of Variation

Coefficient of variation (\(\text{Coeff}_\text{Var}\)) [149], [150] is defined as the ratio between standard deviation (\(\sigma\)) and the arithmetic mean (\(\mu\)). In the proposed method, we use the coefficient of variation to measure the consistency. By consistency, we mean how the distance between the points is uniform from one another. The more uniform the points are, the more consistent they are said to be and the lower the coefficient of variation, the greater is the consistency. Given a set of data points \(x_1, x_2, \ldots, x_n\), we express the coefficient of variation mathematically as follows:

\[
\text{Coeff}_\text{Var} = \frac{\sigma}{\mu} \quad (3.1)
\]

where

\[
\sigma = \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \right)^{\frac{1}{2}} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 \right)^{\frac{1}{2}} \quad \text{and} \quad \mu = \frac{1}{n} \sum_{i=1}^{n} x_i
\]
We use a threshold value on the coefficient of variation (\(\text{Coeff_Var}\)) to determine the inconsistent edges for their removal from the minimum spanning tree of the given data set in order to produce the clusters.

3.2.3 Dynamic Validity Index

A validity index is used to evaluate the quality of the clusters produced by the clustering algorithm. Several validity indices have been proposed in the literature. However, most of them are suitable for well-separated data. The clusters of the complex data sets can be of arbitrary shapes and sizes. We may not always encounter with well-separated clusters. Hence, it is highly essential to use an efficient validity measure of clustering, especially in the case of genome data. For performance measure of the proposed algorithm, we use here dynamic validity index (DVI) [151] defined as follows. Let \(n\) be the number of data points, \(k\) be the pre-defined upper bound of the number of clusters, and \(z_i\) be the center of the cluster \(C_i\). The dynamic validity index is given by

\[
DVI = \min_{p=1,2,...,k} \{\text{IntraRatio}(p) + \gamma \times \text{InterRatio}(p)\}
\]

(3.2)

where the \text{IntraRatio} and \text{InterRatio} are defined as follows.

\[
\text{IntraRatio}(p) = \frac{\text{Intra}(p)}{\text{MaxIntra}}, \quad \text{InterRatio}(p) = \frac{\text{Inter}(p)}{\text{MaxInter}}
\]

(3.3)

\[
\text{Intra}(p) = \frac{1}{n} \sum_{i=1}^{p} \sum_{x \in C_i} \left\| x - z_i \right\|^2, \quad \text{MaxIntra} = \max_{i=1,2,...,k} \text{(Intra}(i))
\]

(3.4)

\[
\text{Inter}(p) = \frac{\max_{i,j} \left\{ \left\| z_i - z_j \right\|^2 \right\} \frac{p}{i=1} \left\{ \frac{1}{\sum_{j=1}^{p} \left\| z_i - z_j \right\|^2} \right\}}{\min_{i \neq j} \left\{ \left\| z_i - z_j \right\|^2 \right\}}
\]

(3.5)
3.3 Proposed Algorithms

\[
\text{and } \text{MaxInter} = \max_{i=1,2,...,k} (\text{Inter}(i))
\]

(3.6)

Here, \textit{Intra Ratio} stands for the overall compactness of clusters scaled from \textit{Intra} term, where as \textit{Inter Ratio} represents overall separation of clusters scaled from \textit{Inter} term. The \textit{Intra} term is the average distance of all the points within a cluster from cluster center. Then we have \textit{Inter} term which is composed of two parts, both of them based on cluster centers. The value of \textit{Inter} increases with the increment in \(k\). The symbol \(\gamma\) in the equation of DVI represents the modulating parameter to balance the noisy data points. If there is no noise in the data the value of \(\gamma\) is set to 1.

3.3 Proposed Algorithms

We present the proposed algorithms in separate subsections as follows.

3.3.1 Algorithm Based on Coefficient of Variation

We first provided an outline of the proposed method as follows. The algorithm comprises of two basic procedures namely, the main and the core. In the main, we find the minimum spanning tree of the given data. Next, we sort the edges of the MST in non-decreasing order of the weights and store them in \textit{Edgelist}. Then the procedure core is applied on this sorted edge list. We also run the core on the same list but in the reverse order. The edges are added or removed in the process of cluster formation depending on some criterion over the threshold value. Then we update the edge list and run the core algorithm on the updated list. This process is repeated until there is no change in the edge list.

In the procedure core, we input a sorted array of the MST edges of the given data points. We pick up one edge at a time from this sorted array and calculate the coefficient of variation. If the coefficient of variation is less than the given threshold value, then that edge is added to the \textit{EdgeSel} or \textit{EdgeRej} (defined later). This process is repeated until an edge is detected for which the coefficient of variation is greater
The intuitive idea behind the core algorithm is that it groups the similar edges having approximately equal weights. Here, the weight of an edge is the Euclidean distance between the terminal points of the edges. It judges the edge by assuming its inclusion in the cluster structure. Then it calculates the coefficient of variation of all the included edges along with the present edge. If the coefficient of variation exceeds the given threshold value, it discards the remaining edges along with the current edge and this edge is treated as an inconsistent edge with respect to the edges added to the group. Otherwise, the edge is added to the group and then the next edge is taken for the consideration. This is continued till the encounter of inconsistent edge or end of the list. The group of edges is the Edgelist which is initialized to NULL. An edge is added to the group by adding it to the list. If the edges are selected from the edge list sorted in non-decreasing order of their weights, then these edges are meant for selection in the final cluster. However, if the list is sorted in non-increasing order, these edges are meant for the rejection.

In the proposed algorithm, there is no need to input any prior information such as cluster numbers, limit on cluster size or initial configuration. It tries to find the optimal cluster number and configuration. We now formally present our algorithm step wise as follows.
Algorithm MST-CV (Threshold)

Notations used in the algorithm:

\((Pat)_{n \times d}\): Pattern matrix of \(n\) data elements having \(d\) dimensions. \(Pat(i, j)\) gives the value of the \(i^{th}\) data point of \(j^{th}\) dimension.

\((Prox)_{n \times n}\): Proximity matrix of \(n^2\) elements holding Euclidean distance between two points of the given data set. The Pattern matrix is converted into Proximity matrix. \(Prox(l, m)\) is the Euclidean distance between the \(l^{th}\) and \(m^{th}\) data points. Note that \(Prox(i, j) = Prox(j, i)\) and \(Prox(i, i) = 0\).

\((Output)_{n \times n}\): Output matrix holding the clustering result. It is basically an adjacency matrix consisting of various components (clusters) in the graph.

\(Weight(e)\): Euclidean distance between the end points of the edge ‘e’.

\(Edgelist\): It is a list that holds the edges obtained by the MST algorithm (Prim’s algorithm) along with their Euclidean distance.

\(Start(Edgelist)\): It is the index of the 1\(^{st}\) element of \(Edgelist\)

\(EdgeSel\): It holds the edges selected by the core algorithm. The edges in this list actually form the clusters.

\(Length(EdgeSel)\): It is the cardinality of \(EdgeSel\).

\(EdgeRej\): It contains the edges rejected by the core algorithm.

\(Threshold\): A given limit of the coefficient of variation.

The Main Algorithm:

Input: The pattern matrix \((Pat)_{n \times d}\)

Output: The Output matrix \((Output)_{n \times n}\)

Pre-processing: Convert pattern matrix \((Pat)_{n \times d}\) to proximity matrix \((Prox)_{n \times n}\) by the following formula:

\[
prox(i, j) = \sqrt{\sum (Pat(i, k) - Pat(j, k))^2} \quad \text{for} \quad 1 \leq k \leq d.
\]
3.3.1 Algorithm Based on Coefficient of Variation

Step 1: Run Prim’s algorithm on Prox and store the edges of the MST in *Edgelist*.

Step 2: Sort the *Edgelist* into non-decreasing order of their weights.

Step 3: Run the core Algorithm on *Edgelist* to store the result into *EdgeSel*.

Step 4: Run the core Algorithm on the reversed *Edgelist* (i.e., non-increasing) to store the result into *EdgeRej*.

Step 5: If *EdgeSel* and *EdgeRej* have no edge in common, then remove all the edges from *Edgelist* that belong to *EdgeRej*; otherwise remove the largest edge from *EdgeSel*.

Step 6: Add all the edges belonging to *EdgeSel* to the Output matrix.

Step 7: Update *Edgelist* by removing the 1st half of the edges of the *EdgeSel* from the *Edgelist*,

\[
\text{i.e. } \text{Edgelist} \leftarrow \text{Edgelist}[\text{Length(EdgeSel)/2 + Start(Edgelist)}]
\]

Step 8: Run the core Algorithm on the updated *Edgelist*.

Step 9: Repeat the steps 6 to 8 until there is a change in the *EdgeSel*.

The Core Algorithm:

Input: *Edgelist*

Output: *EdgeSel, EdgeRej*

Step 1: *Sum1, Count, Sum2* \leftarrow 0

EdgeSel, EdgeRej \leftarrow NULL

Step 2: For each edge ‘e’ in *Edgelist* do

/* Calculation of the Coefficient of Variation */

\{

 Sum1’ \leftarrow *Sum1* + *Weight(e)*
 Sum2’ \leftarrow *Sum2* + (*Weight(e))^2
 Count’ \leftarrow Count + 1
 Mean \leftarrow *Sum1’/Count’
 SD \leftarrow ((*Sum2’/Count’) – Mean^2)^1/2
\}
\[
\text{Coeff}_\text{Var} \leftarrow SD / \text{Mean}
\]

If \(\text{Coeff}_\text{Var} < \text{Threshold} \) then

\[
\{
\]
\[
\text{Sum1} \leftarrow \text{Sum1}'
\]
\[
\text{Sum2} \leftarrow \text{Sum2}'
\]
\[
\text{Count} \leftarrow \text{Count}'
\]

Add edge ‘e’ to the \(\text{EdgeSel} \) (in case the \(\text{Edgelist} \) is sorted in non-decreasing order as per the step 3 of the main algorithm) or add edge ‘e’ to the \(\text{EdgeRej} \) (in case the \(\text{Edgelist} \) is sorted in non-increasing order as per the step 4 of the main algorithm) and join it to already added edges of \(\text{EdgeSel} \) or \(\text{EdgeRej} \).

\[
\}
\]

Else

Exit loop;

\}

Step 3: Stop

\[\]

Time Complexity: It is obvious to note that the time complexity of the algorithm \(\text{Core} \) is \(O(|E|) \), where \(E \) is the \(\text{Edgelist} \) and \(|E| = n - 1 \). It can also be noted that we exit the loop in the above \(\text{Core} \) procedure when we encounter the first inconsistent edge as there is no hope of obtaining any more edge which may lower the coefficient of variation in the sorted edge list.

In the \(\text{Main} \) procedure, Step 1 requires \(O(n^2) \) time as the Prim’s algorithm runs in \(O(n^2) \) time. Step 2 requires \(O(n \log n) \) time for sorting the \(n - 1 \) edges. Each of the steps 3 to 6 and the step 8 requires \(O(n) \) time. Step 7 requires \(O(1) \) time. As the steps 6-8 are iterated \(k \) (\(k \) depends on the number of clusters formed) times, Step 9 requires \(O(kn) \) time. Therefore the \(\text{Main} \) procedure runs in \(O(n^2) \) time.
3.3.2 Experimental Results

For the visualization purpose, we initially tested the proposed algorithm on various benchmark synthetic data sets which are complex for clustering. We also run the algorithm on various benchmark gene expression data [32], [33]. The experiments were performed using MATLAB on an Intel Core 2 Duo Processor machine with T9400 chipset, 2.53 GHz CPU and 2 GB RAM running on Microsoft Windows Vista. We used the same experimental setup for all the proposed algorithms throughout this thesis. We compared the proposed algorithm with the classical *K*-means [26], SFMST [59], SC [152], MSDR [58], IMST [49], SAM [64] and MinClue [60]. In case of multi-dimensional gene expression data we used dynamic validity index DVI (defined in section 3.2.3) as a measure of the quality of clusters. The proposed method detected the outliers in the form of separate clusters with significantly small number of points compared to the actual clusters. Hence, the clusters with considerably small size are declared as outliers by using a limit on the cardinality of all the clusters. An important issue involved in the proposed algorithm is the proper selection of the threshold value for the coefficient of variation. This can range from 0 to 1. The smaller the threshold, the larger is the number of edges to be eliminated and in that case it produces a large number of clusters. The larger the threshold value, the more is the number of edges to be added to the cluster and even inconsistent edges become the part of the clusters. The algorithm is tested varying the threshold value from 0.1 to 0.9. It is observed that the optimal results are obtained for threshold value within the range 0.2 to 0.6 inclusive of both. The results are as follows.

3.3.3 Synthetic Data

We consider here a few generated artificial data sets namely, two-band, cluster inside cluster, three-group, two-moon crescent, density-separated and swirl data. These data sets are usually known to be complex for clustering. The data sets are described as follows.
3.3.4 Experimental Results of Synthetic Data

Two-band data: The objects of this data set are grouped in the form of two bands, where each band represents a cluster. Here, the size of each cluster/band is 200. Few points are plotted little far away from the two bands to represent the outliers.

Cluster-inside-cluster data: This is a special type of data set, where all the objects of one cluster lie inside another cluster. The total number of objects of this data set is 693 and distributed to two clusters. To examine the outlier detection capability, we have also given a few points as outliers.

Three-group data: There are three clusters in this data set and its total size is 300. Unlike the above mentioned data sets, here the points of the clusters are not of uniform shaped. Few outliers are also involved around all the 3 clusters.

Two-moon crescent data: This data set represents two clusters which are of crescent moon shaped. Here few points are also given as outliers to represent the stars. Simply, the clusters of this data set represent the moons and outliers represent the stars. The size of this data set is 556.

Density-separated data: The clusters in this data set are separated by the density. Number of clusters of this data is two and the cardinality is 1009. Like the above data sets, outliers are also given here.

Swirl data: This data set is formed by 312 points and represents 4 clusters, where each cluster is of different shape. Here, three clusters represent different curves and one cluster is in spherical shape.

3.3.4 Experimental Results of Synthetic Data

At first we applied the proposed method on the two-band data of size 200 points. The points of each band are grouped into a separate cluster which is clearly visible from the Figure 3.2(d). All the points of different clusters are shown by different colors. The proposed method also located the outliers (small number of points with different colors) as shown by the same figure. However, the clusters produced by K-means, SFMST and SC are overlapped as depicted in the Figures 3.2(a-c). The proposed algorithm was next applied on the cluster-inside-cluster data of 693 points. The result
is produced in the form of two clusters and few outliers where one cluster lies inside the other one as can be seen from the Figure 3.3(d). The same result is not obtained by K-means, SFMST and SC as visible in the Figures 3.3(a-c). We next ran the proposed algorithm on three-group data of 300 points. Three well separated clusters and few outliers are correctly produced as shown in the Figure 3.4(d). The other techniques used for the comparison, produced the overlapped clusters as demonstrated in the Figures 3.4(a-c). Similarly, the proposed algorithm successfully detected the desired clusters as well as outliers in case of all the other data sets, namely, two-moon crescent, density-separated and swirl which can easily be observed from the Figures 3.5(d), 3.6(d) and 3.7(d). At the same time, none of the other methods K-means, SFMST and SC produced the desired clusters and outliers as clearly noticeable from the Figures 3.5(a-c), 3.6(a-c) and 3.7(a-c).

![Figure 3.2: Result of two-band data of size 200 points. (a) K-means; (b) SFMST; (c) SC; (d) proposed method](image)
3.3.4 Experimental Results of Synthetic Data

Figure 3.3: Result of cluster-inside-cluster data of size 693 points. (a) K-means; (b) SFMS; (c) SC; (d) proposed method

Figure 3.4: Result of three-group data of size 300 points. (a) K-means; (b) SFMS; (c) SC; (d) proposed method
3.3.4 Experimental Results of Synthetic Data

Figure 3.5: Result of two-moon crescent data of size 556 points.
(a) K-means; (b) SFMST; (c) SC; (d) proposed method

Figure 3.6: Result of density-separated data of size 1009 points.
(a) K-means; (b) SFMST; (c) SC; (d) proposed method
3.3.5 Gene Expression Data

In this section, we consider five gene expression data sets [33] for the experimentation, namely, Yeast cell-cycle, Sporulation, Lymphoma, Diauxic and Fibroblasts. All five data sets have some loss of information. Before experiments, we pre-processed the data sets as follows. The genes with less than 20% missing values were retained and the rest of the genes were removed. Then we applied the KNN technique [153] with $k = 15$ for the retained genes to impute the missing values. The description of the data sets is as follows.

Yeast cell-cycle data: This data set [154] has 6178 genes with 77 attributes each. There are 28127 missing values. There are 5571 genes of dimension 77 retained for the experimentation after elimination of 607 genes by pre-processing and filtering as mentioned above.

Sporulation data: This data [155] assays nearly every yeast gene changes in gene
expression during sporulation. It holds a total of 6118 genes of dimension 7 with 612 missing values. After pre-processing 79 genes are removed, and 6039 genes are retained for the analysis.

Lymphoma data: This data set is used to record the distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [156]. It has 4026 genes with 96 attributes each. There are 19667 missing values. No genes are removed after pre-processing and filtering of this data set.

Diauxic data: There are 6153 genes with dimension 7 in Diauxic data [33]. There are 199 missing values and 51 replicates of this data set. After pre-processing the data set is left with 6100 genes with 7 attributes for each as two genes are removed.

Fibroblasts data: The number of genes of Fibroblasts data [33] is 517 with 18 attributes. There are no missing values of this data set. But 12 replicates have been located. After pre-processing we finally remain with 501 genes of 18 attributes each.

3.3.6 Experimental Results of Gene Expression Data

The proposed algorithm was applied on all the above described multi-dimensional gene expression data sets. For the fair evaluation and without any loss of generality, the number of clusters was fixed at 256 similar to that of Du et al., [87]. The performance results of the proposed method and the existing methods MSDR [58], IMST [49], SAM [64] and MinClue [60] are shown by means of dynamic validity index (DVI) in Table 3.1. The lower values of DVI indicate more quality of the clusters. We can easily observe from the Table 3.1 that the proposed MST-based technique outperforms the algorithms MSDR, IMST, SAM and MinClue.
Table 3.1: Results of gene expression data using dynamic validity Index (DVI)

<table>
<thead>
<tr>
<th>Gene Expression Data</th>
<th>No. of Attributes</th>
<th>Data Size</th>
<th>DVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDR</td>
</tr>
<tr>
<td>Yeast cell-cycle</td>
<td>77</td>
<td>5571</td>
<td>0.9405</td>
</tr>
<tr>
<td>Sporulation</td>
<td>7</td>
<td>6039</td>
<td>0.2352</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>96</td>
<td>4026</td>
<td>0.7564</td>
</tr>
<tr>
<td>Diauxic</td>
<td>7</td>
<td>6100</td>
<td>1.5633</td>
</tr>
<tr>
<td>Fibroblasts</td>
<td>18</td>
<td>501</td>
<td>0.2158</td>
</tr>
</tbody>
</table>
3.3.6 Experimental Results of Gene Expression Data

Next, we compared the efficiency of the proposed method with the existing algorithms MSDR, IMST, SAM and MinClue in terms of the computational time. The Figures 3.8(a-e) clearly show that the proposed method is consistently faster than the existing algorithms.

Figure 3.8: Runtime of the proposed method versus MSDR, IMST, SAM and MinClue: (a) Yeast cell-cycle; (b) Sporulation; (c) Lymphoma; (d) Diauxic; (e) Fibroblasts
3.3.7 Algorithm Based on Dynamic Validity Index

It is important to note that the core algorithm alone can produce best clustering results for uniformly dense data points. It can work reasonably for non-uniform data points too, yet better results can be obtained by running the core along with the main algorithm. The proposed algorithm, however, suffers from the localization problem, i.e., if a small number of edges are unusually short, small clusters are formed using only those edges. This is illustrated in Figure 3.9(a) in which some localized clusters have formed with large number of isolated points while running the algorithm. This problem can partially be resolved by unifying such data points with closed proximity to a single point. The algorithm is based on the fact that the edges in the clusters are more consistent than the separating edges. When there is deviation from this fact, there is no proper formation of clusters as illustrated by Figure 3.9(b).

![Figure 3.9: (a) Localization problem: non-uniform data; (b) Deviation from the fact as separating edge is consistent with clustering edges](image)

3.3.7 Algorithm Based on Dynamic Validity Index

The previous algorithm converges to the optimal clustering result based on the limit on coefficient of variation. However, it may not be able to produce efficient results if an appropriate limit is not chosen on the coefficient of variation. Therefore, we present here another MST-based algorithm using the dynamic validity index. The algorithm called MST-DVI computes multiple \((k-1)\) solutions starting from the
highest weight of the MST. Finally, the optimal solution is picked up from the k-1 solutions. The main idea of this method is as follows. We first construct the MST from the given data set using Prim’s algorithm. Then we go on removing the edges in the decreasing order of their weights. At each removal of the next highest edge, it results into certain number of clusters. If any cluster has data points beyond some minimum number, we treat it as an outlier and we do not consider it as a valid cluster. Then we calculate the DVI with the valid clusters only and record both the value of the DVI and the number of clusters. The same process is repeated until some criterion is satisfied. We obtain the final clusters corresponding to the minimum value of the DVI recorded. The algorithm is formally presented stepwise as follows.

Algorithm MST-DVI (S, C)

Input: A set S of the given data points and a parameter C lies between 0 and 1.

Output: Clusters C_1, C_2, \ldots, C_k.

Functions and variables used:

k: A variable to represent the number of clusters

C: A parameter lies between 0 and 1

$DVI(C_1, \ldots, C_k)$: A function to find the dynamic validity index of the clusters C_1, C_2, \ldots, C_k

Step 1: Construct the minimum spanning tree for the given data points using Prim’s algorithm.

Step 2: Set initial value of number of clusters, i.e., $k \leftarrow 1$.

/* Assume that initially whole MST is a cluster */

Step 3: Remove the edge with greatest weight in the MST to produce the clusters.

Step 4: Increase the value of k by 1, i.e., $k \leftarrow k + 1$.

Step 5: Check for each cluster (formed in step 3) whether it contains minimum data points for it to be a valid cluster.

/* This step is basically for the outlier detection */
Step 6: For each invalid cluster (outlier) if any, decrease value of k by 1.

i.e., set $k \leftarrow k - 1$.

Step 7: Call DVI (C_1, C_2, \ldots, C_k) to calculate dynamic validity index by considering k valid clusters using the below formula:

$$DVI(C_1, C_2, \ldots, C_k) = \min_{j=1,2,\ldots,k} \{ \text{IntraRatio}(j) + \gamma \times \text{InterRatio}(j) \}$$

Step 8: Record the value of DVI calculated in step 7 and the corresponding k value.

Step 9: Repeat from step 3 until the termination criterion $D(n) > C \times D(p)$ is met, where C is the parameter that lies between 0 to 1, $D(n)$ is the length of the current edge to be removed for cluster formation and $D(p)$ is the length of the edge previously removed.

Step 10: Obtain the k clusters with respect to the minimum value of the DVI from step 8.

Step 11: Stop.

Time Complexity: The minimum spanning tree is constructed in $O(n^2)$ time using Prim’s algorithm. The value of the dynamic validity index (DVI) is computed for $k + 1$ times in $O((k + 1)n)$ time. Therefore, the total computational cost of the proposed algorithm is quadratic.

3.3.8 Experimental Results

For experiments, we considered four synthetic data sets, namely spiral, banana, half kernel and swirl data. The results are shown in Figures 3.10(a-d)-3.13(a-d). In a specific figure, different clusters are shown by different colors for the better visualization. It is obvious to note from the Figures 3.10(a), 3.11(a), 3.12(a) and 3.13(a) that our algorithm is able to produce the desired clusters for all the synthetic data where as the K-means, SFMST and SC produces the clusters in overlapped fashion as shown in the Figures 3.10(b-d), 3.11(b-d), 3.12(b-d) and 3.13(b-d). It can be noted that the algorithm SC also produced similar result in case of banana data.
3.3.8 Experimental Results

Figure 3.10: Result of spiral data of size 200. (a) proposed method; (b) K-means; (c) SFMST; (d) SC

Figure 3.11: Result of banana data of size 550. (a) proposed method; (b) K-means; (c) SFMST; (d) SC
3.3.8 Experimental Results

Figure 3.12: Result of half kernel data of size 320. (a) proposed method; (b) K-means; (c) SFMST; (d) SC

Figure 3.13: Result of swirl data of size 312. (a) proposed method; (b) K-means; (c) SFMST; (d) SC
Next, we tested the algorithm on eight biological data sets [32], namely iris, spect heart, wine, ecoli, statlog heart, Pima Indians diabetes, soybean and breast tissue with dimensions 4, 22, 13, 7, 13, 8, 35 and 9 respectively. The experimental results and their comparisons with respect to the DVI [151] values are shown in Table 3.2. It can be noted that our algorithm has better (lower) DVI values than that of MSDR [58], IMST [49], SAM [64] and MinClue [60] algorithms in case of most of the biological data.
Table 3.2: Results of biological data using dynamic validity index (DVI)

<table>
<thead>
<tr>
<th>Data</th>
<th>No. of Attributes</th>
<th>Data Size</th>
<th>Cluster No.</th>
<th>DVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSDR</td>
</tr>
<tr>
<td>Iris</td>
<td>4</td>
<td>150</td>
<td>3</td>
<td>0.4065</td>
</tr>
<tr>
<td>Spect Heart</td>
<td>22</td>
<td>187</td>
<td>2</td>
<td>0.8428</td>
</tr>
<tr>
<td>Wine</td>
<td>13</td>
<td>178</td>
<td>3</td>
<td>1.6655</td>
</tr>
<tr>
<td>Ecoli</td>
<td>7</td>
<td>336</td>
<td>8</td>
<td>0.1657</td>
</tr>
<tr>
<td>Statlog Heart</td>
<td>13</td>
<td>270</td>
<td>2</td>
<td>0.9004</td>
</tr>
<tr>
<td>Pima Indians Diabetes</td>
<td>8</td>
<td>768</td>
<td>2</td>
<td>2.1367</td>
</tr>
<tr>
<td>Soybean</td>
<td>35</td>
<td>47</td>
<td>4</td>
<td>0.5631</td>
</tr>
<tr>
<td>Breast Tissue</td>
<td>9</td>
<td>106</td>
<td>2</td>
<td>0.4961</td>
</tr>
</tbody>
</table>
3.4 Conclusion

In this chapter, we presented two MST-based algorithms which run with quadratic computational complexity. Initially, a novel algorithm called MST-CV has been presented based on the coefficient of variation. It is shown to be effective for various two dimensional synthetic and multi-dimensional gene expression data such as Yeast cell-cycle, Sporulation, Lymphoma, Diauxic and Fibroblasts. The results of the proposed method on the synthetic data are shown to be better than K-means, SFMST and SC algorithms. Similarly, in case of gene expression data, the algorithm MST-CV outperforms MSDR, IMST, SAM and MinClue in terms of DVI. It is observed that our algorithm has low computational cost over the existing. Next, another MST-based clustering algorithm named MST-DVI has been proposed. This technique eliminates the inconsistent edges with the help of dynamic validity index. This method is also able to deal with the outlier points. This algorithm is experimented on several synthetic and biological data, namely, iris, spect heart, wine, ecoli, statlog heart, Pima Indians diabetes, soybean and breast tissue. The results of the synthetic data are compared with the K-means, SFMST and SC methods and the results of the proposed scheme on biological data are compared with the existing clustering techniques MSDR, IMST, SAM and MinClue using DVI. The algorithm MST-DVI produced efficient results than that of the existing methods.