List of Tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Table Captions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table- 2.1:</td>
<td>Different potent xenobiotic compounds (Bennet et al 2002)</td>
<td>21</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Composition of Isolation Medium</td>
<td>29</td>
</tr>
<tr>
<td>Table 3.2:</td>
<td>Low Sugar-Water Medium for long term Storage</td>
<td>29</td>
</tr>
<tr>
<td>Table 3.3:</td>
<td>List of media used for screening lignolytic enzyme activity in LDFs</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.4:</td>
<td>Different parameters studied in order to optimize the condition for activation of laccase in HNHC medium</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.5:</td>
<td>Details of different dyes used in the study</td>
<td>33-34</td>
</tr>
<tr>
<td>Table- 4.1:</td>
<td>Month wise availability of different species of LDFs</td>
<td>42-43</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Present-absent data of LDFs in three Forests</td>
<td>47</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Total vs. present fungal families in different forests</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Plot-wise data of different species of LDFs in Bethuadahari Wildlife Sanctuary</td>
<td>50-51</td>
</tr>
<tr>
<td>Table 4.5:</td>
<td>Frequency of different LDFs in Bethuadahari Wildlife Sanctuary</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.6:</td>
<td>Diversity indices of different plots in Bethuadahari Wildlife Sanctuary</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.7:</td>
<td>Plot wise data of different LDF species in Ranaghat Forest</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.8:</td>
<td>Frequency percentage of different LDF species in Ranaghat Forest</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.9:</td>
<td>Diversity Indices range of different plots in Ranaghat Forest</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.10:</td>
<td>Plot wise data of different LDF species Zafarnagar Forest</td>
<td>58-59</td>
</tr>
<tr>
<td>Table 4.11:</td>
<td>Frequency percentage of different LDFs in Zafarnagar Forest</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.12:</td>
<td>Diversity Indices in different plots of Zafarnagar Forest</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.13:</td>
<td>Comparative frequency of different species in three forests</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.14:</td>
<td>List of Fungal Isolates</td>
<td>64-65</td>
</tr>
<tr>
<td>Table 4.15:</td>
<td>Presence or absence of laccase activity of LDF isolates in different growth Media</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.16:</td>
<td>Laccase activity of LDF isolates in different growth media after 14 days</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.17:</td>
<td>Presence and absence of Manganese peroxidase Activity of LDF isolates in Different growth Media</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.18:</td>
<td>Manganese peroxidase activity of LDF isolates in different growth media after 14 days</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.19:</td>
<td>Grouping of LDF isolates on the basis of laccase activity at 14d in HNHC medium</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.20:</td>
<td>Effect of temperature on laccase activity of P. elegans</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.21:</td>
<td>Effect of pH on laccase activity of P. elegans at 30°C</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.22:</td>
<td>Effect of different concentrations of VA on laccase activity of P. elegans at 30°C and pH 6.5</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.23:</td>
<td>Laccase activity of S. commune at different temperature</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.24:</td>
<td>Laccase activity of S. commune at different pH at 30°C</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.25:</td>
<td>Laccase activity of S. commune at different concentrations of VA at 30°C and pH 4.5</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.26:</td>
<td>Laccase activity of Schizophyllum sp. at different temperature</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.27:</td>
<td>Laccase activity of Schizophyllum sp. at different pH at 30°C</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.28:</td>
<td>Laccase activity of Schizophyllum sp. at different concentrations of VA at 30°C and pH 5.5</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.29:</td>
<td>Effect of different temperature on laccase of H. lixii</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.30:</td>
<td>Effect of different pH on laccase of H. lixii at 30°C</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.31:</td>
<td>Effect of VA concentrations on laccase of H. lixii at 30°C and pH 4.5</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.32:</td>
<td>Optimum conditions of laccase activity in different species</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.33:</td>
<td>Decolourization percentage of different dyes (0.1%) at different days of incubation by P. elegans</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.34:</td>
<td>Decolourization percentage of different dyes at different days (0.25%) of incubation by P. elegans</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.35:</td>
<td>Decolourization percentage of different dyes at different days (0.5%) of incubation by P. elegans</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.36:</td>
<td>Decolourization percentage of different dyes at different days (0.1%) of incubation by S. commune</td>
<td>106</td>
</tr>
<tr>
<td>Table 4.37:</td>
<td>Decolourization percentage of different dyes at different days (0.25%) of incubation by S. commune</td>
<td>107</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.38</td>
<td>Decolourization percentage of different dyes at different days (0.5%) of incubation by S. commune</td>
<td>108</td>
</tr>
<tr>
<td>4.39</td>
<td>Decolourization percentage of different dyes at different days (0.1%) of incubation by Schizophyllum sp</td>
<td>110</td>
</tr>
<tr>
<td>4.40</td>
<td>Decolourization percentage of different dyes at different days (0.25%) of incubation by Schizophyllum sp</td>
<td>111</td>
</tr>
<tr>
<td>4.41</td>
<td>Decolourization percentage of different dyes at different days (0.5%) of incubation by Schizophyllum sp</td>
<td>112</td>
</tr>
<tr>
<td>4.42</td>
<td>Decolourization percentage of different dyes at different days (0.1%) of incubation by H. lixii</td>
<td>114</td>
</tr>
<tr>
<td>4.43</td>
<td>Decolourization percentage of different dyes at different days (0.25%) of incubation by H. lixii</td>
<td>115</td>
</tr>
<tr>
<td>4.44</td>
<td>Decolourization percentage of different dyes at different days (0.5%) of incubation by H. lixii</td>
<td>116</td>
</tr>
<tr>
<td>4.45</td>
<td>Selected reference sequences in P. elegans</td>
<td>122-123</td>
</tr>
<tr>
<td>4.46</td>
<td>Selected reference sequences in S. commune</td>
<td>126-128</td>
</tr>
<tr>
<td>4.47</td>
<td>Reference Sequences Selected for Schizophyllum sp</td>
<td>131-132</td>
</tr>
<tr>
<td>4.48</td>
<td>NCBI blast result showing first 10 matches with Hypocrea isolate sequence.</td>
<td>135-136</td>
</tr>
<tr>
<td>Figure No</td>
<td>Figure Captions</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fig 2.1:</td>
<td>Model of soil humic acid (adapted from Stevenson 1994).</td>
<td>10</td>
</tr>
<tr>
<td>Fig 3.1:</td>
<td>Location of the three Forest areas on Nadia District, West Bengal.</td>
<td>25</td>
</tr>
<tr>
<td>Fig 3.2:</td>
<td>Annotation sheet for description of Basidiomycetes (after Lodge et al 2004).</td>
<td>27</td>
</tr>
<tr>
<td>Fig 3.3:</td>
<td>Molecular structure of high molecular weight dyes used in the study.</td>
<td>35-36</td>
</tr>
<tr>
<td>Fig 4.1:</td>
<td>Some of the pictures of forest areas and collection of fungal flora.</td>
<td>44</td>
</tr>
<tr>
<td>Fig 4.2:</td>
<td>Number of LDFs recorded during different months of study (May-October 2014).</td>
<td>45</td>
</tr>
<tr>
<td>Fig 4.3:</td>
<td>Number of LDF species belonging to different families.</td>
<td>49</td>
</tr>
<tr>
<td>Fig 4.4:</td>
<td>Taxa S and Individuals index value range in different plots of Bethuadahari Wildlife Sanctuary.</td>
<td>54</td>
</tr>
<tr>
<td>Fig 4.5:</td>
<td>Shannon and Brillouin index value range in different plots of Bethuadahari Wildlife Sanctuary.</td>
<td>54</td>
</tr>
<tr>
<td>Fig 4.6:</td>
<td>Taxa S and Individuals index value range in different plots of Ranaghat Forest.</td>
<td>57</td>
</tr>
<tr>
<td>Fig 4.7:</td>
<td>Taxa S and Individuals index value range in different plots of Ranaghat Forest.</td>
<td>58</td>
</tr>
<tr>
<td>Fig 4.8:</td>
<td>Taxa S and Individuals value range in different plots of Zafarnagar Forest.</td>
<td>60</td>
</tr>
<tr>
<td>Fig 4.9:</td>
<td>Shannon and Brillouin indices range in plots of Zafarnagar Forest.</td>
<td>61</td>
</tr>
<tr>
<td>Fig 4.10:</td>
<td>Mean Shannon and Brillouin values of three Forests.</td>
<td>61</td>
</tr>
<tr>
<td>Fig 4.11:</td>
<td>Some of the fungal culture isolates.</td>
<td>65</td>
</tr>
<tr>
<td>Fig 4.12:</td>
<td>Different species of Agaricus- A. sylvaticus (a); A. campestris (b); A. bernardii (c); A. semotus (d) and Agaricus sp-1 (e).</td>
<td>79</td>
</tr>
<tr>
<td>Fig 4.13:</td>
<td>Different LDFs- Macrolepiota mastoidea (a); Lepiota spp. (b & c); Marasmius siccus (d); Volvariella taylori (e) and Coprinus comatus (f).</td>
<td>80</td>
</tr>
<tr>
<td>Fig 4.14:</td>
<td>Different LDFs- Hypholoma caponoides (a); Laccaria lacata (b & c); Lentinus tigrinus (d); Mycena maculate (e) and Podoscypha elegans (f).</td>
<td>81</td>
</tr>
<tr>
<td>Fig 4.15:</td>
<td>Different LDFs- Geastrum triplex (a); Mycelia mat of Schizophyllum commune (b); S. commune like fungi in woody litter (c); Mycelia mat of Schizophyllum sp. (d); Hypocrea lixii on litter (e) and wood (f).</td>
<td>82</td>
</tr>
<tr>
<td>Fig 4.16:</td>
<td>Spore Prints of some LDFs.</td>
<td>83</td>
</tr>
<tr>
<td>Fig 4.17:</td>
<td>Spores of some LDFs.</td>
<td>83</td>
</tr>
<tr>
<td>Fig 4.18:</td>
<td>Effect of temperature on laccase activity of P. elegans.</td>
<td>91</td>
</tr>
<tr>
<td>Fig 4.19:</td>
<td>Effect of pH on laccase activity of P. elegans at 30°C.</td>
<td>91</td>
</tr>
<tr>
<td>Fig 4.20:</td>
<td>Effect of different concentrations of VA on laccase activity of P. elegans at 30°C and pH 6.5.</td>
<td>92</td>
</tr>
<tr>
<td>Fig 4.21:</td>
<td>Effect of different temperature on laccase of S. commune.</td>
<td>94</td>
</tr>
<tr>
<td>Fig 4.22:</td>
<td>Laccase activity of S. commune at different pH at 30°C.</td>
<td>94</td>
</tr>
<tr>
<td>Fig 4.23:</td>
<td>Effect of different concentrations of VA on laccase of S. commune at 30°C and pH 4.5.</td>
<td>95</td>
</tr>
<tr>
<td>Fig 4.24:</td>
<td>Effect of different temperature on laccase of Schizophyllum sp.</td>
<td>96</td>
</tr>
<tr>
<td>Fig 4.25:</td>
<td>Laccase activity of Schizophyllum sp. at different pH at 30°C.</td>
<td>97</td>
</tr>
<tr>
<td>Fig 4.26:</td>
<td>Laccase activity of Schizophyllum sp. at different concentrations of VA at 30°C and pH 5.5.</td>
<td>97</td>
</tr>
<tr>
<td>Fig 4.27:</td>
<td>Effect of different temperature on laccase of H. lixii.</td>
<td>99</td>
</tr>
<tr>
<td>Fig 4.28:</td>
<td>Effect of different pH on laccase of H. lixii at 30°C.</td>
<td>99</td>
</tr>
<tr>
<td>Fig 4.29:</td>
<td>Effect of VA concentrations on laccase of H. lixii at 30°C and pH 4.5.</td>
<td>100</td>
</tr>
<tr>
<td>Fig 4.30:</td>
<td>Decolourization of 0.1% dye by P. elegans at different days and mean decolourization.</td>
<td>102</td>
</tr>
<tr>
<td>Fig 4.31:</td>
<td>Decolourization of 0.25% dye by P. elegans at different days and mean decolourization.</td>
<td>103</td>
</tr>
<tr>
<td>Fig 4.32:</td>
<td>Decolourization of 0.5% dye by P. elegans at different days and mean decolourization.</td>
<td>104</td>
</tr>
<tr>
<td>Fig 4.33:</td>
<td>Decolourization of 0.1% dye by S. commune at different days and mean decolourization.</td>
<td>106</td>
</tr>
<tr>
<td>Fig 4.34:</td>
<td>Decolourization of 0.25% dye by S. commune at different days and mean decolourization.</td>
<td>107</td>
</tr>
<tr>
<td>Fig 4.35:</td>
<td>Decolourization of 0.5% dye by S. commune at different days and mean decolourization.</td>
<td>108</td>
</tr>
<tr>
<td>Fig 4.36:</td>
<td>Decolourization of 0.1% dye by Schizophyllum sp. at different days and mean decolourization.</td>
<td>110</td>
</tr>
<tr>
<td>Fig 4.37:</td>
<td>Decolourization of 0.25% dye by Schizophyllum sp. at different days and mean decolourization.</td>
<td>111</td>
</tr>
<tr>
<td>Fig 4.38:</td>
<td>Decolourization of 0.5% dye by Schizophyllum sp. at different days and mean decolourization.</td>
<td>112</td>
</tr>
<tr>
<td>Fig 4.39:</td>
<td>Decolourization of 0.1% dye by H. lixii at different days and mean decolourization.</td>
<td>114</td>
</tr>
<tr>
<td>Fig 4.40:</td>
<td>Decolourization of 0.25% dye by H. lixii at different days and mean decolourization.</td>
<td>115</td>
</tr>
<tr>
<td>Fig 4.41:</td>
<td>Decolourization of 0.5% dye by H. lixii at different days and mean decolourization.</td>
<td>116</td>
</tr>
<tr>
<td>Fig 4.42:</td>
<td>Decolourization of different dyes.</td>
<td>117</td>
</tr>
<tr>
<td>Fig 4.43:</td>
<td>The chromatogram of forward (1F) sequencing reactions in P. elegans.</td>
<td>120</td>
</tr>
<tr>
<td>Fig 4.44:</td>
<td>The chromatogram of reverse (4R) sequencing reactions in P. elegans.</td>
<td>121</td>
</tr>
<tr>
<td>Fig 4.45:</td>
<td>Phylogenetic Tree of P. elegans.</td>
<td>124</td>
</tr>
<tr>
<td>Fig 4.46:</td>
<td>Phylogenetic Tree of S. commune.</td>
<td>129</td>
</tr>
<tr>
<td>Fig 4.47:</td>
<td>Phylogenetic Tree of Schizophyllum sp.</td>
<td>133</td>
</tr>
</tbody>
</table>