Contents

I. List of Figures : xii
II. List of Tables : xv

Chapters

1. **Introduction** : 1-7
 1.1. World population and feather 1
 1.2. Feather waste 2
 1.3. Keratin 2
 1.4. Use of feather waste 2
 1.5. Feather meal 3
 1.6. Bioconversion of feather into feather meal 4
 1.7. Keratinolytic enzymes 4
 1.8. Keratinolytic bacteria 5
 1.9. Keratinolytic fungi 5
 1.10. Keratinolytic actinobacteria 5
 1.11. Objectives of the present study 7

2. **Review of literature** : 8-42
 2.1. World population 8
 2.2. Global demand of dietary animal protein 8
 2.3. Global trade in chicken products 8
 2.4. Chicken production in Asia 9
 2.5. Indian poultry industry 10
 2.6. Feather waste 12
 2.7. Specific characteristic of chicken feather and keratin protein 13
 2.8. Composition of feather keratin 16
 2.9. Utilization of feather waste 16
 2.10. Conventional methods for feather degradation 17
 2.11. Biodegradation of feather waste 17
 2.12. Microbial proteolytic system 19
 2.13. Sources of microbial keratinases 19
 2.14. Fungal keratinases 20
 2.15. Bacterial keratinases 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16.</td>
<td>Actinobacterial keratinases</td>
<td>21</td>
</tr>
<tr>
<td>2.17.</td>
<td>Actinobacteria</td>
<td>22</td>
</tr>
<tr>
<td>2.17.1.</td>
<td>Pre-treatment and preparation of soil suspensions</td>
<td>22</td>
</tr>
<tr>
<td>2.17.2.</td>
<td>Isolation of soil actinobacteria</td>
<td>23</td>
</tr>
<tr>
<td>2.17.3.</td>
<td>Screening of keratinolytic actinobacteria</td>
<td>24</td>
</tr>
<tr>
<td>2.17.4.</td>
<td>Characterization of actinobacteria</td>
<td>25</td>
</tr>
<tr>
<td>2.17.4.1.</td>
<td>Actinobacterial taxonomy</td>
<td>25</td>
</tr>
<tr>
<td>2.17.4.2.</td>
<td>Morphological and physiological methods</td>
<td>25</td>
</tr>
<tr>
<td>2.17.4.3.</td>
<td>Molecular characterization</td>
<td>27</td>
</tr>
<tr>
<td>2.18.</td>
<td>Keratinases from other microbes and archaea</td>
<td>30</td>
</tr>
<tr>
<td>2.19.</td>
<td>Physiology of keratinase production and keratinolysis</td>
<td>33</td>
</tr>
<tr>
<td>2.20.</td>
<td>Actinobacterial keratinolysis</td>
<td>36</td>
</tr>
<tr>
<td>2.21.</td>
<td>Feather meal formulation and biotechnological applications</td>
<td>40</td>
</tr>
</tbody>
</table>

3. Materials and methods | : | 43-61 |
| 3.1. | Description of sampling sites | 43 |
| 3.2. | Soil sample collection | 43 |
| 3.3. | Enrichment and pre-treatment of soil samples | 43 |
| 3.4. | Isolation of actinobacteria | 44 |
| 3.5. | Screening of keratinolytic actinobacteria | 46 |
| 3.5.1. | Primary screening of keratinolytic actinobacteria | 46 |
| 3.5.2. | Secondary screening of keratinolytic actinobacteria | 46 |
| 3.6. | Taxonomic characterization of potential actinobacterial isolates | 47 |
| 3.6.1. | Morphological characterization | 47 |
| 3.6.1.1. | Aerial mycelium | 47 |
| 3.6.1.2. | Substrate mycelium | 47 |
| 3.6.2. | Microscopic characterization | 47 |
| 3.6.2.1. | Coverslip culture | 47 |
| 3.6.2.2. | Spore chain and mycelium morphology | 48 |
| 3.6.2.3. | Scanning Electron Microscopy (SEM) | 48 |
| 3.6.3. | Cultural characterization | 48 |
| 3.6.4. | Optimization of cultural conditions | 48 |
| 3.6.5. | Gram’s staining | 49 |
| 3.6.6. | Biochemical characterization | 49 |
| 3.6.6.1. | Diffusible pigments test | 49 |
| 3.6.6.2. | Melanin pigment production test | 49 |
| 3.6.6.3. | Catalase test | 49 |
| 3.6.6.4. | Oxidase test | 50 |
| 3.6.6.5. | Citrate utilization test | 50 |
| 3.6.6.6. | Gelatin liquefaction test | 50 |
3.6.6.7. Nitrate reduction test
3.6.6.8. Urease test
3.6.6.9. Starch hydrolysis
3.6.6.10. Casein hydrolysis
3.6.6.11. Hydrogen sulphide production test
3.6.7. Physiological characterization
 3.6.7.1. Effect of temperature
 3.6.7.2. Effect of pH
 3.6.7.3. Utilization of carbon sources
 3.6.7.4. Effect of amino acids sources
 3.6.7.5. Effect of sodium chloride on growth
3.7. Molecular characterization
 3.7.1. Isolation of chromosomal DNA
 3.7.2. PCR amplification of the 16S rRNA
 3.7.3. 16S rRNA sequencing
 3.7.4. Phylogenetic analysis
3.8. Actinobacterial keratinolytic enzyme assay
 3.8.1. Microscopic study on enzymatic feather degradation
 3.8.2. Proteolytic activity
 3.8.3. Keratinolytic activity
 3.8.4. Effect of pH on enzyme activity
 3.8.5. Effect of temperature on enzyme activity
 3.8.6. Effect of enzyme inhibitors, detergents and chelator on enzyme activity
 3.8.7. Enzyme activity at different days of incubation for actinobacterial isolates
 3.8.8. Amino acid analysis by HPLC
3.9. Detection of actinobacterial proteolytic enzymes
 3.9.1. Ammonium sulphate fractionation
 3.9.2. Protein estimation
 3.9.3. Non denaturing poly acrylamide gel electrophoresis (ND-PAGE)
 3.9.4. Coomassie brilliant blue staining and destaining
 3.9.5. Detection of proteolytic activity on polyacrylamide gel (protease zymography)
 3.9.6. Destaining and in-gel digestion
 3.9.7. Matrix-assisted laser desorption/ionization (MALDI-TOF MS) analysis
 3.9.8. Database and proteolytic enzyme diversity analysis
3.10. Bioconversion of feather into feed supplement using keratinolytic actinobacteria
3.10.1. Preparation of feathers
3.10.2. Effect of amino acid rich feed supplement on broiler chicken’s growth

3.11. Statistical analysis

4. Results:
4.1. Enrichment of soil samples
4.2. Isolation of actinobacteria
4.3. Screening of keratinolytic actinobacteria
4.3.1. Primary screening of keratinolytic actinobacteria
4.3.2. Secondary screening of keratinolytic actinobacteria
4.4. Characterization and identification of potential keratinolytic actinobacteria
4.4.1. Morphological characterization
4.4.2. Cultural characterization of actinobacterial isolates
4.4.3. Effect of various nutrient sources on actinobacterial growth
4.4.4. Biochemical characterization
4.4.5. Physiological characterization
4.4.6. Molecular characterization

4.5. Enzyme activity
4.5.1. Preliminary assessment of keratinolytic activity
4.5.2. Proteolytic activity and keratinolytic activity
4.5.3. Effect of pH on enzyme activity
4.5.4. Effect of temperature on enzyme activity
4.5.5. Effect of enzyme inhibitors, detergents and chelator on enzyme activity
4.5.6. Enzyme activity at different days of incubation
4.5.7. Amino acid analysis by HPLC

4.6. Detection of actinobacterial keratinolytic enzymes
4.6.1. Ammonium sulphate fractionation
4.6.2. Non denaturing poly acrylamide gel electrophoresis (ND-PAGE)
4.6.3. Protease zymography
4.6.4. Matrix-assisted laser desorption/ionization (MALDI-TOF MS) analysis
4.6.5. Database and proteolytic enzyme diversity analysis
4.7. Bioconversion of feather to feather meal using keratinolytic *Nocardiopsis alba* SD7

4.7.1. Preparation of feathers

4.7.2. Effect of amino acid rich feed supplement on broiler chicken’s growth

5. Discussion: 115-136

5.1. Pre-treatment of soil samples 115

5.2. Isolation of actinobacteria 116

5.3. Screening of keratinolytic actinobacteria 117

5.4. Characterization of actinobacteria 118

5.4.1. Morphological characterization 119

5.4.2. Cultural characteristics 120

5.4.3. Biochemical and physiological characteristics 123

5.4.4. Molecular characterization 125

5.5. Enzymatic keratinolysis 127

5.5.1. Proteolytic and keratinolytic activity 128

5.5.2. Effect of chemicals on enzyme activity 129

5.5.3. Enzyme activity on different days on incubation 130

5.5.4. Amino acids analysis 131

5.6. Detection of actinobacterial proteolytic enzymes 131

5.6.1. Gel electrophoresis and protease zymography 131

5.6.2. Matrix-assisted laser desorption/ionization (MALDI-TOF MS) analysis 132

5.7. Bioconversion of feather and effect of amino acid rich feed supplement on chicken 134

6. Summary: 137-140

7. Conclusion: 141-142

8. References

9. Appendix