Contents

List of Figures
Abstract

Chapter 1: Introduction
1.1 Various potentials of ANN
1.2 Artificial Neurons
1.3 Networks of Neurons
1.4 Comparison of NN with the conventional computers
1.5 Perceptive
1.6 Problem statements
1.7 Organization of the thesis
References

Chapter 2: Learning Algorithms
2.1 Introduction
2.2 Outline of some learning algorithms
2.3 Least Mean Square (LMS) Algorithm
2.4 Algorithm used for the training of the neural networks
2.5 Special cases for the single layer network learning algorithms
2.6 Training of a multilayer ANN
2.7 Some commonly used terms
References

Chapter 3: ANN Approach for efficient computation of
Logarithm and Antilogarithm of Decimal Numbers
3.1 Introduction
3.2 Modeling of an ANN structure to compute logarithm
3.3 Modeling of an ANN structure to compute Antilogarithm
References
Chapter - 4 Computer Simulation Of DSP Problems Using LMS Technique
51-82

4.1 Introduction 51
4.2 Outline of Different Transforms 52
4.3 The Learning Algorithm 53
4.4 Generation of Transforms using adaptive LMS algorithm 56
4.5 Computer Simulation 56
4.6 Reduction in computational complexities 57
4.7 Computational complexities 59
4.8 Conclusions 60

References 69
Appendix - A 71

Chapter - 5 Development Of Efficient Convolver and Deconvolver
Using Neural Network Technique 82-102

5.1 Introduction 82
5.2 Proposed Technique for circular deconvolution 83
5.3 Proposed Technique for linear deconvolution 87
5.4 Theoretical computation of circularly deconvolved output 92
5.5 Computer Simulation 92
5.6 Conclusions 95

References 101

Chapter - 6 Identification of Nonlinear Static Systems
103-119

6.1 Introduction 103
6.2 Characterization and identification of systems 104
6.3 Proposed Technique 104
6.4 Learning Algorithm 107
Chapter 7 Adaptive Channel Equalization

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>7.2 Adaptive Channel Equalization</td>
<td>121</td>
</tr>
<tr>
<td>7.3 The proposed efficient equalizer structures</td>
<td>123</td>
</tr>
<tr>
<td>7.4 Computer Simulation</td>
<td>127</td>
</tr>
<tr>
<td>7.5 Conclusion</td>
<td>136</td>
</tr>
</tbody>
</table>

References: 137

Chapter 8 Conclusions and Further Scope for Research Work

- Enclosure of Publications

iii