CONTENTS

(Page No. May vary in PDF format)

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
</tbody>
</table>

1. Introduction
 1.1 Drug Delivery Systems – An Overview
 1.2 Drug delivery routes
 1.3 Oral Delivery Systems: Focus on Concepts of Rate Controlled Drug Delivery
 1.3.1 Definitions
 1.3.2 Objectives and potential advantages of controlled drug delivery system
 1.3.3 Possible disadvantages of controlled release dosage forms
 1.3.4 Rationale for Controlled Release Dosage Forms
 1.3.5 Physicochemical properties of drug influencing the drug product design and performance
 1.3.6 Biological Factors Influencing the Drug Product Design
 1.3.7 Classification of Oral Controlled Release Systems
 1.3.8 Polymer Microspheres for Controlled Drug Release
 1.4 Tablets
 1.4.1 Immediate release tablet
 1.4.2 Characteristics of Immediate release Tablets
 1.5 Hypertension
 1.5.1 Classification of hypertension
 1.5.2 Signs and symptoms
 1.5.3 Prevention
 1.5.4 Treatment

2. Literature review
 2.1 Drug profile
 2.2 Polymer profile

3. Objective and plan of work
 3.1 Plan of research work

4. Materials Specification
 4.1 Instrument specification

5. Preformulation study
 5.1 Analytical method development for Losartan potassium
5.1.1 Preparation of Phosphate Buffer pH 6.5 solution (IP-2007) 65
5.1.2 Preparation of stock solution 65
5.1.3 Determination of λ_{max} and calibration curve 66
5.1.4 Preparation of 0.1M HCl pH 1.2 solution 69
5.1.5 Preparation of stock solution 69
5.1.6 Determination of λ_{max} and calibration curve 69
5.2 Preparation of Losartan Potassium loaded Microspheres 72
5.3 Design and Formulation of Losartan Potassium loaded Microspheres by Double Emulsion Solvent Evaporation Technique (W1/O/W2 Method) 73
5.4 Design and Formulation of Losartan Potassium loaded Microspheres by Emulsion Solvent Evaporation Technique (O/W Method) 75
5.5 Process Optimization during preparation of batches of Microspheres 76
5.6 Characterization process of LP loaded microspheres 78
 a) % yield 78
 b) Flow properties of microsphere 78
 c) Drug loading and Encapsulation Efficiency 80
 d) Particle size distribution study 81
 e) SEM analysis 82
 f) Fourier Transform Infrared studies (FTIR) 82
 g) Proton NMR Study 83
 h) Differential Scanning Calorimetry (DSC) 83
 i) Crystallographic characterization using powder-XRD 84
 j) In vitro drug release study 84
5.6.1 Organoleptic evaluation 88
5.6.2 Solubility study 88
5.6.3 Bulk density 89
5.6.4 Carr’s compressibility index 89
5.6.5 Hausner’s Ratio 89
5.6.6 Angel of repose 89
5.6.7 Moisture content 90
5.6.8 Loss on drying 91
5.7 Formulation and Development of Bi-layer Solid Dosage Form of Losartan Potassium Containing an Immediate Release Layer and a Slow Release Layer 92
5.8 Evaluation of Tablets 93
6 Results and Discussion 96
6.1 Preparation process of LP loaded microspheres 96
6.2 % Yield for prepared microspheres 97
6.3 Flow properties of optimized microspheres 98
6.4 % drug loading and encapsulation efficiency 100
6.5 Particle size distribution study 102
6.6 Surface morphology study 103
6.7 Solid state interaction study by FTIR 106
6.8 Solid state interaction study by Proton NMR 118
6.9 Thermal analysis of drug crystallinity (DSC analysis) 123
6.10 Crystallographic characterization using powder XRD 127
6.11 In vitro release study of prepared microspheres 130
6.12 Micromeritic study of Powder blend 151
6.13 Evaluation of Bi-layer tablet
 (Hardness, Thickness, Weight variation) 152
6.14 Drug excipients compatibility study 153
6.15 In-vitro dissolution of Bi-layer tablet 154
6.16 Stability study 156
7 Conclusion 158
 7.1 Conclusion 158
 7.2 Future Scope 159
8 References 160
9 Publications 168