List of Tables

2.1 A summary of common operations on fuzzy sets 8
2.2 Basic structure of a GA ... 11

3.1 Characteristics of the Partitional Clustering Algorithms 36
3.2 Characteristics of the Hierarchical Clustering Algorithms 37
3.3 Characteristics of the Grid-Based Clustering Algorithms 38
3.4 Characteristics of the Density-Based Clustering Algorithms 39

4.1 Algorithm for k-means clustering 53
4.2 Algorithm for fuzzy c-means clustering 57
4.3 GA based clustering Algorithm 59
4.4 Algorithm for KSOM clustering 65
4.5 Comparison of objective function value obtained by the k-means, FCM and the KSOM algorithm for the Iris and MS data set for varying number of clusters .. 69
4.6 Comparison of cluster sizes obtained by the k-means, FCM and the KSOM algorithm for the Iris and the Diabetes data sets 69
4.7 Execution time for the k-means, FCM, GA based FCM and the KSOM algorithm for the Iris data set.
4.8 Number of clusters obtained by the PBM, XB, $DUNN$, SC and the SI validity indices using k-means clustering algorithm.
4.9 Values of the PBM, XB, $DUNN$, SC and the SI validity indices in the range of $k = 2, 3, \ldots, 10$ for the Cancer, Iris and the Diabetes data sets using the k-means algorithm.
4.10 Values of the PBM, XB, $DUNN$, SC and the SI validity indices in the range of $k = 2, 3, \ldots, 10$ for the Data_3_2, Data_4_3 and the Data_5_2, data sets using the k-means algorithm.
4.11 Values of the PBM, XB, $DUNN$, SC and the SI validity indices in the range of $k = 2, 3, \ldots, 10$ for the Data_6_2 and the Data_9_2 data sets using the k-means algorithm.
4.12 Number of clusters obtained by the $PBMF$, XBF, PC and the MPC validity indices using the FCM and GA based FCM clustering algorithm.
4.13 Values of the $PBMF$, XBF, PC and the MPC validity indices in the range of $k = 2, 3, \ldots, 10$ for the Cancer and the Iris data sets using the FCM and the GA based FCM algorithm with $m = 2$.
4.14 Values of the $PBMF$, XBF, PC and the MPC validity indices in the range of $k = 2, 3, \ldots, 10$ for the Diabetes and the Data_3_2 data sets using the FCM and the GA based FCM algorithm with $m = 2$.
4.15 Values of the $PBMF$, XBF, PC and the MPC validity indices in the range of $k = 2, 3, \ldots, 10$ for the Data_4_3 and the Data_5_2 data sets using the FCM and the GA based FCM algorithm with $m = 2$.

viii
4.16 Values of the $PBMF$, XBF, PC and the MPC validity indices in the range of $k = 2, 3, \ldots, 10$ for the Data_6_2 and the Data_9_2 data sets using the FCM and the GA based FCM algorithm with $m = 2$.

4.17 Comparison of the clustering techniques.

5.1 Algorithm to partition the original data set to form the simplified data set.

5.2 Result of the Data_6_2 data set for the FCM, $psFCM$ and the $pshFCM$ clustering algorithms with optimal cluster center $c = 6$, $m = 2.0$ and the number of split in the $k-d$ tree $= 6$.

5.3 Result of the Data_4_2 data set for the FCM, $psFCM$ and the $pshFCM$ clustering algorithms with optimal cluster center $c = 6$, $m = 2.0$ and the number of split in the $k-d$ tree $= 6$.

5.4 Result of the Data_4_3 data set for the FCM, $psFCM$ and the $pshFCM$ clustering algorithms with optimal cluster center $c = 4$, $m = 2.0$ and the number of split in the $k-d$ tree $= 6$.

5.5 Result of the Data_4_3 data set for the FCM, $psFCM$ and the $pshFCM$ clustering algorithms with optimal cluster center $c = 4$, $m = 2.0$ and the number of split in the $k-d$ tree $= 6$.

6.1 Number of clusters c obtained by the validity indices for different data sets using the FCM clustering algorithm with $m = 1.2$.

6.2 Values of the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Iris and the Diabetes data sets using the FCM clustering algorithm with $m = 1.2$.

ix
6.3 Values of the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Data_3-2 and the Data_4-3 data sets using the FCM clustering algorithm with $m = 1.2$.

6.4 Values of the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Data_5-2 and the Data_6-2 data sets using the FCM clustering algorithm with $m = 1.2$.

6.5 Number of clusters c obtained by the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Data_3-2 and the Data_6-2 data sets using the FCM clustering algorithm with $m = 2.0$.

6.6 Values of the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Data_3-2 and the Data_6-2 data sets using the FCM clustering algorithm with $m = 2.0$.

6.7 Values of the validity indices in the range of $c = 2, 3, \ldots, 15$ for the Elliptical_10.2 data set using the FCM clustering algorithm with $m = 2.0$.

6.8 Number of clusters c obtained by the validity indices for the DataX1, DataX2, DataX3 and the DataX1Ndata data sets using the FCM clustering algorithm with different values of m.

6.9 Values of the validity indices in the range of $c = 2, 3, \ldots, n - 1$ for DataX1 and DataX2 data sets using the FCM clustering algorithm with $m = 1.2$.

6.10 Values of the validity indices for DataX3 and DataX1N data sets using the FCM clustering algorithm with $m = 1.2$.