# LIST OF FIGURES

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>INTRODUCTION</strong></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Figure 1: Illustration showing the conceptualization of mucoadhesive nanocarriers’s enhanced bio-available topical ocular drug delivery based on the polymer chain entangle and charge interaction between nanocarrier and the –ve charged mucin layer over the corneal surface.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><strong>LITERATURE OVERVIEW</strong></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Figure 2.1: Diagrammatical representation of ocular drug delivery barriers in different areas of the eyes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 2.2: Possible hypothesized mechanism describing the mucoadhesion over the corneal surface by mucoadhesive and positively charged nano-system.</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td><strong>BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF GANCICLOVIR</strong></td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Figure 3.1: UHPLC chromatograms obtained from (A) blank aqueous humor, and (B) aqueous humor spiked with GCV (0.2 µg/mL).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 3.2: Stability studies (Thermal cycling and freeze thaw) showed that GCV was stable in aqueous humor and percentage recovery is more than 95% for thermal cycling and 92.9% for freeze thaw cycles.</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td><strong>BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF CYCLOSPORINE A</strong></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Figure 4.1: The MS full scan spectra for showed protonated precursor [M+H] + ions at 1225.1764.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 4.2: The MS/MS scan spectra showing precursor ions (m/z 1113.0751).</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Figure 4.3: UHPLC chromatograms of CYA (0.2 µg/mL).</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Figure 4.4: UHPLC chromatograms obtained from) aqueous humor spiked with CYA (0.2 µg/mL).</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Figure 4.5: UHPLC chromatograms obtained from blood samples spiked with CYA (0.2 µg/mL).</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Figure 4.6: UHPLC chromatograms obtained from conjuctiva samples spiked with CYA (0.2 µg/mL).</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Figure 4.7: UHPLC chromatograms obtained from cornea samples spiked with CYA (0.2 µg/mL).</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td><strong>GANCICLOVIR NIOSOMAL NANOFORMULATION</strong></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.1. A: Photograph of SFDC-6 Diffusion cell drive console, B: LOGAN Assembly for in-vitro release and ex-vivo permeation study for drug permeation through goat cornea.

Figure 5.2: Texture analysis graphs showing the forces of detachment of the chitosan solutions

Figure 5.3: Transmission electron photomicrograph of (A) uncoated and (B) uncoated niosomes.

Figure 5.4: Particle size distribution of niosomes prepared by span 40 (S40), Span60 (S60) and of same formulations after coating (CHS40 and CHS60) showing increased size of coated niosome.

Figure 5.5: Zeta potential of the chitosan coated niosome and uncoated niosome. chitosan coated niosome has high positive zeta potential.

Figure 5.6: Normal plot of residual for niosomal size prepared by span 60 and span40.

Figure 5.7: Residual vs run for size of both type of formulations showing a random scatter indicating that there is no lurking variable affecting the experiment.

Figure 5.8: Residuals vs Predicted Plot of formulation (S40 and S60) size. The plot here is random scatter (constant range of residuals across the graph) indicating constant variance.

Figure 5.9: Predicted vs Actual graph formulation size showing a good distribution between the line indicating no transformation of data is needed.

Figure 5.10: Contour plot showing the effect on size of S60 on the variation of volume of Aqueous phase and Surfactant: cholesterol ratio.

Figure 5.11: Contour plot showing the effect on size of S40 on the variation of volume of Aqueous phase and Surfactant: cholesterol ratio.

Figure 5.12: Contour plot showing the effect on size of S60 on the variation of volume of sonication time and Surfactant: cholesterol ratio.

Figure 5.13: Contour plot showing the effect on size of S40 on the variation of volume of sonication time and Surfactant: cholesterol ratio.

Figure 5.14: Contour plot showing the effect on size of S60 on the variation of volume of sonication time and Aqueous phase volume.

Figure 5.15: Contour plot showing the effect on size of S40 on the variation of volume of sonication time and Aqueous phase volume.

Figure 5.16: 3D-response surface for the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio on S60 size.
Figure 5.17: 3D-response surface for the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio on S40 size.
Figure 5.18: 3D-response surface for the effect of variation of sonication time and aqueous phase volume S60 size.
Figure 5.19: 3D-response surface for the effect of variation of sonication time and volume of Aqueous phase volume on S40 size.
Figure 5.20: 3D-response surface for the effect of variation of sonication time and surfactant: cholesterol ratio on S60 size.
Figure 5.21: 3D-response surface for the effect of variation of sonication time and surfactant: cholesterol ratio on S40 size.
Figure 5.22: Normal plot of residual for niosomal size prepared by span60 and span40.
Figure 5.23: A Random scatter of Residual vs run graph of both S60 and S40 %EE indicating that there is no lurking variable affecting the experiment.
Figure 5.24: Residual vs predicted graph of S60 and S60 %EE showing random scatter (constant range of residuals across the graph) indicating constant variance.
Figure 5.25: Predicted vs actual graph of %EE of both type of formulations.
Figure 5.26: Contour plot showing the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio for S60 entrapment efficiency.
Figure 5.27: Contour plot showing the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio for S40 entrapment efficiency.
Figure 5.28: Contour plot showing the effect of variation of volume of sonication time and Surfactant: cholesterol ratio for S60 entrapment efficiency.
Figure 5.29: Contour plot showing the effect of variation of volume of sonication time and Surfactant: cholesterol ratio for S40 entrapment efficiency.
Figure 5.30: Contour plot showing the effect of variation of volume of sonication time and aqueous phase ratio for S60 entrapment efficiency.
Figure 5.31: Contour plot showing the effect of variation of volume of sonication time and aqueous phase volume ratio for S40 entrapment efficiency.
Figure 5.32: 3D-response surface showing the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio on S60 entrapment efficiency.
Figure 5.33: 3D-response surface showing the effect of variation of volume of Aqueous phase volume and Surfactant: cholesterol ratio on S40 entrapment efficiency.
efficiency.
Figure 5.34: 3D-response surface showing the effect of variation of sonication time and Surfactant: cholesterol ratio on S60 entrapment efficiency.
Figure 5.35: 3D-response surface showing the effect of variation of sonication time and Surfactant: cholesterol ratio on S40 entrapment efficiency.
Figure 5.36: 3D-response surface showing the effect of variation of Sonication time and volume of Aqueous phase volume on S60 entrapment efficiency.
Figure 5.37: 3D-response surface showing the effect of variation of Sonication time and volume of Aqueous phase volume on S40 entrapment efficiency.
Figure 5.38: Percentage drug release profile of GCV from normal () and chitosan coated niosomal dispersion.
Figure 5.39: Effect of nature of surfactant and the cholesterol on drug release and vesicular size
Figure 5.40: Transcorneal permeation profiles of GCV from the investigated formulations (normal and chitosan coated niosomes) using goat eyes corneas
Figure 5.41: Gamma scintigraphic dynamic images of whole-body of rabbit for first 30 minutes (30 sec per frame) after 5 minutes of administration: (A) GCV-MNDs (B) GCV-NDs and (C) GCV-sol.
Figure 5.42: Precorneal drainage (radioactivity remaining Vs time profile) obtained by counting radioactivity remaining in the ROI on dynamic images over period of 30 min for (A) GCV-MNDs (B) GCV-NDs and (C) GCV-sol.
Figure 5.43: In-vivo Pharmacokinetic profile of GCV in Aq. Humor after topical instillation of GCV solution, GCV-NDs and GCV-MNDs.
Figure 5.44: Diagrammatical illustration of mechanism of enhanced corneal retention and pathway of corneal absorption of GCV–MNDs

CHAPTER 6: CYCLOSPORINE A NANOEMULSION FORMULATION

Figure 6.1: Solubility of cyclosporin A in different selected oils.
Figure 6.2: Solubility profile of cyclosporin A in different selected surfactants and co-surfactants.
Figure 6.3: Pseudoternary phase diagram showing o/w nanoemulsion region for S/CoS ratio 1:1(Tween20: Transcutol P).
Figure 6.4: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:1. (Cremophore EL: Transcutol P).
Figure 6.5: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:1. (Tween 80: Transcutol P).

Figure 6.6: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:1. (Labrasol: Transcutol P).

Figure 6.7: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:0 (Tween 20: Transcutol P).

Figure 6.8: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 2:1 (Tween 20: Transcutol P).

Figure 6.9: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:2 (Tween 20: Transcutol P).

Figure 6.10: Pseudo ternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 3:1 (Tween 20: Transcutol P).

Figure 6.11: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:3 (Cremophore EL: Transcutol P).

Figure 6.12: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 3:1 (Cremophore EL: Transcutol P).

Figure 6.13: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:0 (Cremophore EL: Transcutol P).

Figure 6.14: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:2 (Cremophore EL: Transcutol P).

Figure 6.15: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 2:1 (Cremophore EL: Transcutol P).

Figure 6.16: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 1:3 (Cremophore EL: Transcutol P).

Figure 6.17: Pseudoternary phase diagram showing o/w nanoemulsion region for surfactant/ cosurfactant ratio 3:1 (Cremophore EL: Transcutol P).

Figure 6.18: TEM microphotograph of CYA loaded nanoemulsion by TEM A) formulation B1 B) formulation CH-B1 (mucoadhesive nanoemulsion) (100,000×).

Figure 6.19: Globule size distribution of CYA loaded nanoemulsion before and after CH addition; A) formulation B1 B) formulation CH-B1.

Figure 6.20: % drug release Vs time profile of selected formulations and controls for the period of 12hrs.
Figure 6.21: Gamma scintigraphic dynamic images of whole-body of rabbit for first 30 minutes (30 sec per frame) after 5 minutes of administration CH-B1.

Figure 6.22: Gamma scintigraphic dynamic images of whole-body of rabbit for first 30 minutes (30 sec per frame) after 5 minutes of administration B1.

Figure 6.23: Hypothesized mechanism describing the mucoadhesion of CYA mucoadhesive NEs formulation system (CH-B1) due to the presence of chitosan

Figure 6.24: CyA concentration from B1, CH-B1 and CYA suspension at different time point in cornea.

Figure 6.25: CyA concentration from B1, CH-B1 and CYA suspension at different time point in conjunctiva.

Figure 6.26: CyA concentration from B1, CH-B1 and CYA suspension at different time point in plasma.

Figure 6.27: CyA concentration from B1, CH-B1 and CYA suspension at different time point in aqueous humor.

CHAPTER 7: SAFETY STUDY OF GANCICLOVIR MUCOADHESIVE NIOSOME AND CYCLOSPORINE A MUCOADHESIVE NANOEMULSION

Figure 7.1: Scheme of application of formulations and controls in Hen’s Egg CAM

Figure 7.2: Vascular responses at 0.5, 2 and 5 min post topical application of 0.1 M NaOH solution, saline solution, MNDs and MNEs.

Figure 7.3: Microscopic image confirmed the presence of normal corneal morphology in control, MNDs and MNEs formulations treated eyes