Content

Symbols and Abbreviations

Chapter 1 Introduction

1.1 Oxidation
1.1.1 The meaning of oxidation
1.1.2 Classification of oxidation processes
1.1.2.1 Homolytic oxidation
1.1.2.2 Heterolytic oxidation
1.1.3 Autoxidation

1.2 Oxyhalogenation

1.2.1 Halogens

1.2.1.1 Abundance
1.2.1.2 Properties
1.2.1.3 Reactivity
1.2.1.4 Oxidizing power
1.2.1.5 Reactivity with water

1.3 Bromine

1.3.1 Characteristics

1.3.1.1 Physical characteristics
1.3.1.2 Chemical characteristics

1.3.2 History of bromine

1.3.3 Properties of bromine

1.3.4 Occurrence and abundance

1.3.5 Isotopes

1.3.6 Production

1.3.6.1 Laboratory methods of production
1.3.6.2 Industrial scale production

1.3.7 National status of bromine

1.3.8 Bromine compounds and their chemistry

1.3.8.1 Bromine in organic chemistry
1.3.8.2 Bromine in inorganic chemistry

1.3.9 Applications

1.3.9.1 As a reagent
1.3.9.2 Flame retardant
1.3.9.3 Gasoline additive
1.3.9.4 Pesticide
1.3.9.5 Other uses

1.3.10 Biological role
Chapter 2 Review of reagents and catalysts

2.1 Oxidizing reagent
 2.1.1 Metal oxidant
 2.1.1.1 Permanganate oxidations
 2.1.1.2 Chromic acid oxidations
 2.1.2 Non-metal oxidant
 2.1.3 Miscellaneous oxidant
 2.1.4 Green oxidants
 2.1.4.1 Molecular oxygen (O₂)
 2.1.4.2 Hydrogen peroxide (H₂O₂)

2.2 Oxybrominating reagents
 2.2.1 Liquid bromine
 2.2.2 N-Bromosuccinimide
 2.2.3 Miscellaneous oxybromination reagents
 2.2.4 Green Brominating Reagent (Bromide/Bromate/H⁺)
 2.2.4.1a Preparation of Green Brominating Reagent
 2.2.4.1b Experimental procedure for the preparation of brominating reagent BR-S
 2.2.4.2 General mechanistic pathways for generation of BrOH
 2.2.5 Hydrobromic acid/Hydrogen peroxide (HBr/H₂O₂)

2.3 Catalyst and reagents for imine synthesis
2.4 Catalyst and reagents for hydroarylation of styrenes

References & Notes

Chapter 3 Oxybromination Reaction

3.1 Synthesis of α-bromoketones
 3.1.1 Synthesis of α-bromoketones from olefins using Green Brominating Reagent (BR-S)
 3.1.2 Synthesis of bromohydrins, α-bromoketones from olefins using HBr/H₂O₂
 3.1.2.1 Regioselective synthesis of bromohydrins from olefins using HBr/H₂O₂
 3.1.2.2 Direct synthesis of α-bromoketones from olefins using HBr/H₂O₂
 3.1.3 Synthesis of α,α-dibromoketones from alkynes using HBr/H₂O₂
 3.1.4 Synthesis of α-bromoketones from vic-dibromo alkanes using H₂O₂

3.2 Chemical reactivity of α-bromoketones

References & Notes
Chapter 4 Oxidation Reactions 84-97
4.1 Oxidation of methyl arenes to their corresponding carboxylic acids using
Green Brominating Reagent 84
4.2 Direct oxidation of benzyl bromides to benzaldehydes 90
4.3 Process development of important bromocompounds 93
 4.3.1 Multi-gram preparation of 2, 4, 6 tribromoaniline (TBA) 94
 4.3.2 Multi-gram preparation of N-bromosuccinimide (NBS) 94
References & Notes 95

Chapter 5 Functional Group Transformation through Catalytic Reactions 98-127
5.1 Hydroarylation of styrenes (C-C bond formation) 100
5.2 Imine synthesis (C-N bond formation) 108
 5.2.1 Synthesis of imines from amines using Green Brominating Reagent (BR-S) 109
 5.2.2 Synthesis of imine from amines using copper salts in aerobic conditions 111
 5.2.3 Imine synthesis from amines using copper powder in aerobic conditions 116
References and notes 121

Chapter 6 Experimental Procedures, Characterization of Synthesized Compounds and their Spectral Data 128-186
6.1 Experimental conditions 128
 6.1.1 General 128
 6.1.1.1 GC conditions for GCMS 129
 6.1.1.2 MS conditions 129
 6.2 Synthesis of α-bromoketones 129
 6.2.1 General procedure for the synthesis of α-bromoketones from olefins using Green Brominating Reagent (BR-S) 129
 6.2.1.1 Characterization data of α-bromoketones 130
 6.2.2 General procedure for the synthesis of bromohydrins, α-bromoketones from olefins using HBr/H₂O₂ as a reagent system 134
 6.2.2.1 General procedure for the synthesis of bromohydrins from olefins using HBr/H₂O₂ 134
 6.2.2.2 General procedure for the direct synthesis of α-bromoketones from olefins using HBr/H₂O₂ 135
 6.2.2.3 General procedure for regeneration and reuse of bromide in the effluent 135
 6.2.3 Synthesis of α,α-dibromoketones from alkynes 136
 6.2.3.1 General experimental procedure for the direct synthesis of α,α-dibromoketone from alkynes using HBr/H₂O₂ 136
 6.2.3.2 Characterization data of α,α-dibromoketones 136
 6.2.4 Synthesis of α-bromoketones from vic-dibromide using H₂O₂ 139
 6.2.4.1 General procedure for the synthesis of α-bromoketones from vic-dibromide using H₂O₂ 139
 6.3 Oxidation of methyl arenes to benzoic acids 139
 6.3.1 General procedure for the synthesis of benzoic acids from
methylarenes using *Green Brominating Reagent*
6.3.2 General procedure for regeneration and reuse of bromide from the aqueous effluent
6.3.2.1 Characterization data of benzoic acids
6.4 Preparation of benzaldehydes from benzyl bromides
6.4.1 General procedure for the conversion of benzyl bromides to benzaldehydes using H_2O_2
6.4.1.1 Characterization data of benzaldehydes
6.4.1.1 Characterization data of benzaldehydes
6.5 Hydroarylation of styrenes
6.5.1 General procedure for hydroarylation of styrenes using KHSO$_4$
6.5.1.1 Characterization data of hydroarylated products
6.6 Synthesis of imines from amines
6.6.1 General procedure for the synthesis of imines from amines using copper (I) chloride as catalyst
6.6.2 General procedure for the synthesis of imines from amines using copper (0) powder as catalyst
6.6.2.1 Characterization data of imines
6.7 NMR Spectra of synthesized compounds
6.8 Selective GC-MS spectra

Chapter 7 Conclusions

List of Publications