Reference

chemistry studies with a carbon xerogel, Applied Catalysis B: Environmental, 84, 75 – 86.

Chaliha, S., Bhattacharyya, K.G., Catalytic wet oxidation of 2-chlorophenol, 2,4- dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41, *Chemical Engineering Journal*, 139, 2008, 575–588.

Khetri et al. (2010a) synthesis and characterization of fly ash supported sulfate zirconia catalyst for benzylated reaction, *Fuel processing technology*, 91 (10), 1288 - 1295.

Ma, J., Song, W., Chen, C., Ma, W., Zhao, J., Tang, Y., Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation

La1−xAx′BO3 (A′ = Sr, Ce; B = Co, Mn): the role of oxygen mobility, Applied Catalysis B Environmental, 80, 51 – 61.

Zeng et al. (2013), CWPO of chlorophenol over Ce0.86Cu0.14-O2 catalysts, _International journal of chemical reactor engineering_, 11(1), 577-585.

List of Publications

Bharati Deka, K.G. Bhattacharyya, Using coalfly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization, Journal of Environmental Management 150 (2015) 479-488.

Bharati Deka, K.G. Bhattacharyya, Utilization of Mn(II)-impregnated fly ash as oxidation catalyst for removing industrial pollutants from water: A case study with