TABLE OF CONTENTS

LITERATURE REVIEW

Introduction: 1

TB: Some key facts: 1-5

Antitubercular Drug Therapy: Issues and concerns: 5-8

Need for novel and sustained delivery systems: 8-13

Nanodelivery systems: 14-37

Nanomedicine as an answer to cerebral, drug-resistant and latent TB: 37-39

Patented systems/status of ATD nanodelivery systems: 39-42

Future Perspective on nano-ATD therapy: 42-45

Solid lipid nanoparticles (SLNs): Drug delivery aspects: 46-47

Factors influencing characteristics and biodistribution of lipidic nanoparticles (LNs): 47-51

Constituents of lipidic nanoparticles: 51-52

Toxicity of nanoparticles: 53

Toxicity reports on SLNs: 53-58

Rifampicin: 59-62

Ethambutol: 63-66

RESEARCH ENVISAGED

CHAPTER I. RIFAMPICIN: 71-144

Introduction: 71-73

Experimental: 73-91

Materials: 73-75

Methods:
- Development of HPLC method: 76
- Solubility of Rifampicin: 76-77
- Interaction studies: 77
- Optimization of Microemulsion composition for preparing SLNs: 77-78
- Preparation of SLN dispersion: 78-79
- Total drug content (TDC) and percent entrapment efficiency (% EE): 79-80
- Particle size, PDI and zeta potential: 80
- Particle shape and surface morphology (TEM): 80
Results and Discussion
- Development of HPLC method
- Solubility of Rifampicin
- Interaction Studies
- Optimization of Microemulsion composition for preparing SLNs
- Characterization of RIF-SLNs
- Transmission Electron Microscopy
- Atomic force microscopy (AFM)
- Powder X-ray Diffraction Study
- Differential Scanning Calorimetry (DSC) studies
- In vitro release
- Stability of developed SLNs
- Degradation studies
- In vivo interaction of RIF with INH
- In vivo Pharmacokinetic Study of RIF-SLNs
- Microbioassay method
- Toxicity Studies
- Behavioural changes

Conclusions

CHAPTER II. ETHAMBUTOL

Introduction

Experimental

Materials

Methods
- Development and validation of Bioanalytical UPLC method
- Stability at various storage conditions
- Development of EMB-SLNs
| Interaction Studies with Compritol® 888 ATO | 153 |
| Preparation and characterization of solid lipid nanoparticles (SLNs) | 153 |
| Particle size, PDI and zeta potential | 154 |
| Total drug content (TDC) and entrapment efficiency (% EE) | 154 |
| Particle shape and surface morphology (TEM) | 154 |
| Atomic force microscopy (AFM) | 154-155 |
| Differential Scanning Calorimetry (DSC) studies | 155 |
| Powder X-ray Diffraction Study (PXRD) | 155 |
| In vitro release of EMB-SLN | 155 |
| Stability of developed SLNs | 156 |
| Pharmacokinetic Study | 156 |

Results and Discussion

UPLC Assay validation	157-161
Development of EMB-SLN	162
Interaction Studies with Compritol® 888 ATO	162-163
Preparation and characterization of solid lipid nanoparticles	163
Particle size, PDI and zeta potential	163-164
Total drug content (TDC) and entrapment efficiency (% EE)	164-166
Transmission Electron Microscopy	167
Atomic force microscopy	167-168
Differential Scanning Calorimetry	169
Powder X-ray Diffraction Study	170
In vitro release	170-172
Stability of developed SLNs	172
Pharmacokinetic Study	173-178

Conclusions

178-179

SUMMARY

180-181

BIBLIOGRAPHY

182-214

PUBLICATIONS, PATENTS AND PRESENTATIONS

215-216