CONTENT

1. INTRODUCTION
 1.1 TREATMENT OF URINARY INCONTINENCE 4

2. LITERATURE REVIEW
 2.1 ANATOMY AND PHYSIOLOGY OF THE BLADDER 8
 2.2 BLADDER DISORDER 10
 2.3 DRUG DELIVERY SYSTEMS 16
 2.3.1 CONTROLLED DRUG DELIVERY SYSTEM 16
 2.3.2 CONTROLLED RELEASE MECHANISMS AND APPROACHES 16
 2.3.2.1 Diffusion controlled release systems 16
 2.3.2.2 Dissolution–controlled system 19
 2.3.2.3 Erosion system 20
 2.3.2.4 Osmotic pump systems 20
 2.3.2.5 Gastroretentive Drug Delivery Systems 22
 2.3.2.6 Microencapsulation systems 23
 2.3.2.7 Ion exchange resins systems 24
 2.3.2.8 pH independent systems 25
 2.3.3 DRUG RELEASE MECHANISM MODELING 26
 2.4 MATRIX SYSTEMS 27
 2.4.1 ADVANTAGES OF MATRIX TABLETS 27
 2.4.2 DISADVANTAGES OF MATRIX TABLETS 28
 2.4.3 CLASSIFICATION OF MATRIX SYSTEMS 28
 2.4.3.1 Hydrophilic Matrix systems 28
 2.4.3.1.1 Hydroxypropyl methyl cellulose 30
 2.4.3.1.2 Natural gums polymers 33
 2.4.3.1.3 Acrylic acid Polymers 37
 2.4.3.2 Hydrophobic matrix systems 41
 2.4.3.2.1 Glyceryl (di) behenate 43
2.4.3.2.2 Ethyl cellulose 45
2.4.4 LIPID MATRICES 48
 2.4.4.1 CARNAUBA WAX 50
 2.4.4.2 GLYCERYL MONOSTEARATE 51
 2.4.4.3 STEARIC ACID 52
2.5 DIRECT COMPRESSION TABLETS 54
 2.5.1 LACTOSE FOR DIRECT COMPRESSION 54
 2.5.2 MICROCRYSTALLINE CELLULOSE 55
2.6 HOT MELT GRANULATION TECHNIQUE 57
2.7 MULTIPARTICULATE SYSTEM 58
 2.7.1 METHODS USED FOR PELLET PREPARATION 60
 2.7.2 EXTRUSION-SPHERONISATION 60
2.8 MICROSPHERES 65
 2.8.1 ADVANTAGES OF MICROSPHERES AS DRUG DELIVERY SYSTEM 66
 2.8.2 TECHNIQUES USED FOR PRODUCTIONS OF MICROSPHERES 66
 2.8.3 FACTORS INFLUENCING PROPERTIES OF MICROSPHERES PREPARED BY SOLVENT EVAPORATION METHOD 72
 2.8.4 EUDRAGIT® POLYMERS 77
 2.8.5 ETHYL CELLULOSE MICROSPHERES 80
2.9 ANIMAL MODELS IN OVERACTIVE BLADDER 83
2.10 DRUG PROFILE (TOLTERODINE TARTRATE) 83
 2.10.1 ANALYTICAL METHODS 84
 2.10.2 DRUG CLASS AND MECHANISM 84
 2.10.3 PHARMACOLOGY 85
3. RESEARCH ENVISAGED 88
3.1 PLAN OF WORK 89
 3.1.1 PREFORMULATION STUDIES 89
 3.1.2 DEVELOPMENT OF SINGLE UNIT EXTENDED RELEASE SYSTEMS 90
 3.1.3 EVALUATION OF THE DEVELOPED MATRIX TABLETS SYSTEMS 91
 3.1.4 DEVELOPMENT OF MULTIPARTICULATE SYSTEMS 91
 3.1.5 EVALUATION OF THE DEVELOPED MULTIPARTICULATE SYSTEMS 91
3.1.6 Development of microencapsulation systems
3.1.7 Evaluation of the developed microspheres
3.1.8 In-vivo pharmacokinetics studied
3.1.9 Stability study

4. MATERIALS AND METHOD
4.1 MATERIALS AND EQUIPMENTS
4.1.1 MATERIALS USED IN THE STUDY
4.1.2 EQUIPMENTS EMPLOYED IN THE STUDY
4.2 METHODS
4.2.1 PREFORMULATION STUDIES
4.2.2 GUMS CHARACTERIZATION
4.2.3 PREPARATION OF STANDARD PLOT OF TOLTERODINE TARTRATE USING UV-VISIBLE SPECTROPHOTOMETER
 4.2.3.1 Preparation of standard plot of tolterodine tartrate in distilled water
 4.2.3.2 Preparation of standard plot of tolterodine tartrate in phosphate buffer pH 6.8
 4.2.3.3 Preparation of standard plot of tolterodine tartrate in methanol
4.2.4 HIGH PERFORMANCE CHROMATOGRAPHY METHOD FOR ESTIMATION OF TOLTERODINE TARTRATE IN PLASMA
4.2.5 PREPARATION OF TOLTERODINE TARTRATE MATRICES TABLETS
 4.2.5.1 HPMC based matrix tablets of tolterodine tartrate
 4.2.5.2 Acrypol® 971G and Carbopol® 71G based matrix tablets of tolterodine tartrate
 4.2.5.3 Compritol® 888 ATO based matrix tablets of tolterodine tartrate
 4.2.5.4 Compritol® 888ATO based matrix tablets of tolterodine tartrate prepared by hot melt technique
 4.2.5.5 Odina gum based matrix tablets of tolterodine tartrate
 4.2.5.6 Boswellia gum based matrix tablets of tolterodine tartrate
 4.2.5.7 Xanthan gum based matrix tablets of tolterodine tartrate
 4.2.5.8 Odina gum and xanthan gum combination based matrix tablets of tolterodine tartrate
4.2.6 EVALUATION OF TOLTERODINE TARTRATE MATRICES TABLETS
4.2.7 PREPARATION OF TOLTERODINE MATRIX PELLETS
| 4.2.7.1 | Microcrystalline cellulose pellets of tolterodine tartrate | 110 |
| 4.2.7.2 | Compritol® 888 ATO based matrix pellets of tolterodine tartrate | 110 |
| 4.2.7.3 | Glyceryl monostearate based matrix pellets of tolterodine tartrate | 110 |
| 4.2.7.4 | Stearic Acid based matrix pellets of tolterodine tartrate | 111 |
| 4.2.7.5 | Carnauba wax based matrix pellets of tolterodine tartrate | 112 |
| 4.2.7.6 | Carnauba wax:ethyl cellulose based matrix pellets of tolterodine tartrate | 113 |
| 4.2.7.7 | Preparation of tolterodine tartrate matrix pellets coated with ethyl cellulose | 114 |

4.2.8 EVALUATION OF TOLTERODINE PELLETS

4.2.8.1	Angle of repose	115
4.2.8.2	Bulk Density	115
4.2.8.3	Compressibility Index and Hausner Ratio	115
4.2.8.4	Shape characterization	116
4.2.8.5	Nominal granule fracture strength	116
4.2.8.6	Particle size analysis	117
4.2.8.7	Determination of drug content	117
4.2.8.8	In-vitro Drug release studies	117
4.2.8.9	Drug Release Kinetics	117
4.2.8.10	Compatibility studies (FTIR studies)	117
4.2.8.11	Scanning electron microscopy	118
4.2.8.12	X-ray diffraction	118
4.2.8.13	Differential scanning calorimetric study	118

4.2.9 PREPARATION OF TOLTERODINE MICROSPHERE

4.2.10 EVALUATION OF TOLTERODINE MICROSPHERE

4.2.10.1	Percentage yield value of microspheres	120
4.2.10.2	Particle Size determination	120
4.2.10.3	Determination of drug loading and incorporation efficiency of microspheres	120
4.2.10.4	In-vitro drug release	121
4.2.10.5	Drug Release Kinetics	121
4.2.10.6	Differential scanning calorimetric study	122
4.2.10.7	Scanning electron microscopy	122
5.7.1 Physical evaluation
5.7.1.1 HPMC matrix tablets
5.7.1.2 Acrypol® and Carbopol® 71G matrix tablets
5.7.1.3 Compritol® 888 ATO matrix tablets
5.7.1.4 Gums matrix tablets
5.7.2 In-vitro drug release studies and determination of swelling index (SI)
5.7.2.1 In-vitro drug of HPMC-based matrix tablets
5.7.2.2 Swelling index determination of HPMC K4M-based matrix tablets
5.7.2.3 Swelling index determination of HPMC K100M-based matrix tablets
5.7.2.4 In-vitro drug of Acrypol® 971G and Carbopol® 71G-based matrix tablets
5.7.2.5 Swelling index determination of Acrypol® 971G and Carbopol® 71G-based matrix tablets
5.7.2.6 In-vitro drug of Compritol® 888 ATO-based matrix tablets
5.7.2.7 Swelling index determination of Compritol® 888 ATO-based matrix tablets
5.7.2.8 Natural gums-based matrix tablets
5.7.2.8.1 In-vitro drug of odina gum-based matrix tablets
5.7.2.8.2 Swelling index determination of odina gum-based matrix tablets
5.7.2.8.3 In-vitro drug of boswellia gum-based matrix tablets
5.7.2.8.4 Swelling index determination of boswellia gum-based matrix tablets
5.7.2.8.5 In-vitro drug of xanthan gum-based matrix tablets
5.7.2.8.6 Swelling index determination of xanthan gum-based matrix tablets
5.7.2.8.7 In-vitro drug of from odina gum and xanthan gum combination based matrix tablets
5.7.2.8.8 Swelling index determination of odina gum and xanthan gum combination based matrix tablets
5.8 Drug release kinetics
5.9 Evaluation of tolv踏上dine pellets
5.9.1 Angle of repose
5.9.2 Bulk density
5.9.3 Compressibility index and Hausner ratio
5.9.4 Particle size and shape characterization
5.9.5 NOMINAL GRANULE FRACTURE STRENGTH 187
5.9.6 DETERMINATION OF DRUG CONTENT 194
5.9.7 COMPATIBILITY STUDIES FTIR STUDIES 194
5.9.7.1 FTIR Studies 194
5.9.7.2 Differential scanning calorimetric study 199
5.9.8 IN-VITRO DRUG RELEASE STUDIES 204
5.9.9 DRUG RELEASE KINETICS 210
5.9.10 SCANNING ELECTRON MICROSCOPY 211
5.9.11 X-RAY DIFFRACTION 214
5.10 EVALUATION OF TOLTERODINE MICROSPHERE 218
5.10.1 PERCENTAGE YIELD VALUE OF MICROSPHERES 218
5.10.2 PARTICLE SIZE DETERMINATION 218
5.10.3 DRUG LOADING AND DRUG EFFICIENCY DETERMINATION 219
5.10.4 IN-VITRO DRUG RELEASE STUDIES 226
5.10.5 DRUG RELEASE KINETICS 230
5.10.6 DIFFERENTIAL SCANNING CALORIMETRIC STUDY 232
5.10.7 SCANNING ELECTRON MICROSCOPY 234
5.11 PHARMACOKINETICS STUDIES 241
5.11.1 Group I-pharmacokinetics of placebo tablets 241
5.11.2 Group II-pharmacokinetics of immediate release tablets 241
5.11.3 Group III-pharmacokinetics of extended release matrix tablets 244
5.11.4 Group IV-pharmacokinetics of matrix pellets 247
5.11.5 Group V-pharmacokinetics of intravesical administration 250
5.11.6 Group VI-pharmacokinetics of rectal suppositories formulation 253
5.12 STABILITY STUDY 257
5.12.1 Stability study of matrix tablets 258
5.12.2 Stability study of matrix pellets 259
5.12.3 Stability study of microsphere 260
6. SUMMARY AND CONCLUSION 264
7. BIBLIOGRAPHY 279