LIST OF TABLES

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Table No</th>
<th>Title of the table</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.01</td>
<td>List of US Patents for FDDS</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>3.02</td>
<td>List of drugs explored for various floating dosage forms</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>3.03</td>
<td>Gastroretentive products available in the market</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>4.01</td>
<td>Standard plot data for Verapamil hydrochloride in pH 1.2 hydrochloric acid buffer</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>4.02</td>
<td>Standard plot data for Rosiglitazone maleate in pH 1.2 hydrochloric acid buffer</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>4.03</td>
<td>Standard plot data for Losartan potassium in pH 1.2 hydrochloric acid buffer</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>4.04</td>
<td>Formulation chart of non-effervescent floating Losartan potassium tablets</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>4.05</td>
<td>Formulation chart of effervescent floating Verapamil hydrochloride tablets</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>4.06</td>
<td>Formulation chart of Rosiglitazone maleate hollow microspheres</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>4.07</td>
<td>Relationship between angle of repose and powder flow</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>4.08</td>
<td>Relationship between powder flowability & % compressibility</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>4.09</td>
<td>Number of animals required for the in vivo evaluation studies</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>5.01</td>
<td>Physical properties of non-effervescent floating tablets of Losartan potassium</td>
<td>99</td>
</tr>
<tr>
<td>14</td>
<td>5.02</td>
<td>FT-IR spectral data of Losartan potassium and floating matrix tablet formulation G-VI</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>5.03</td>
<td>DSC thermograms data of Losartan potassium & its floating matrix tablet formulation G-VI</td>
<td>102</td>
</tr>
<tr>
<td>16</td>
<td>5.04</td>
<td>% Swelling data of non effervescent floating matrix tablet formulations in pH 1.2 HCl buffer</td>
<td>105</td>
</tr>
<tr>
<td>17</td>
<td>5.05</td>
<td>In vitro release data of Losartan potassium from floating matrix tablet formulations</td>
<td>109</td>
</tr>
<tr>
<td>18</td>
<td>5.06</td>
<td>Data of various parameters of model fitting for non effervescent floating matrix tablet formulations</td>
<td>112</td>
</tr>
<tr>
<td>19</td>
<td>5.07</td>
<td>Stability study data of non effervescent floating tablet (G-VI) of Losartan potassium</td>
<td>115</td>
</tr>
<tr>
<td>20</td>
<td>6.01</td>
<td>Physical properties of effervescent floating tablets of Verapamil hydrochloride</td>
<td>119</td>
</tr>
<tr>
<td>21</td>
<td>6.02</td>
<td>FT-IR Spectral data of effervescent floating tablet of Verapamil hydrochloride (B1) and Verapamil hydrochloride pure drug</td>
<td>120</td>
</tr>
<tr>
<td>22</td>
<td>6.03</td>
<td>DSC thermogram data of effervescent floating tablet of Verapamil hydrochloride (B1) and Verapamil hydrochloride pure drug</td>
<td>123</td>
</tr>
<tr>
<td>Sl. No</td>
<td>Table No</td>
<td>Title of the table</td>
<td>Page No</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>23</td>
<td>6.04</td>
<td>Effect of Sodium bicarbonate on onset and duration of floatation of effervescent floating tablet of Verapamil hydrochloride (B1)</td>
<td>125</td>
</tr>
<tr>
<td>24</td>
<td>6.05</td>
<td>% Water uptake of effervescent floating tablets of Verapamil hydrochloride formulations in pH 1.2 hydrochloric acid buffer</td>
<td>129</td>
</tr>
<tr>
<td>25</td>
<td>6.06</td>
<td>In vitro drug release data of effervescent floating tablets of Verapamil hydrochloride in pH 1.2 Hydrochloric acid buffer (B1-B6)</td>
<td>132</td>
</tr>
<tr>
<td>26</td>
<td>6.07</td>
<td>In vitro drug release data of effervescent floating tablets of Verapamil hydrochloride in pH 1.2 Hydrochloric acid buffer (B7-B13)</td>
<td>133</td>
</tr>
<tr>
<td>27</td>
<td>6.08</td>
<td>Kinetic treatment of dissolution profile of tablets (Values of R², k, and n for tablets) and mechanism of drug release</td>
<td>136</td>
</tr>
<tr>
<td>28</td>
<td>6.09</td>
<td>Stability study data of effervescent floating tablet formulation (B1) of Verapamil hydrochloride</td>
<td>140</td>
</tr>
<tr>
<td>29</td>
<td>7.01</td>
<td>Percentage yield of Rosiglitazone maleate hollow microspheres</td>
<td>147</td>
</tr>
<tr>
<td>30</td>
<td>7.02</td>
<td>Drug loading and encapsulation efficiency of prepared hollow microspheres of Rosiglitazone maleate</td>
<td>149</td>
</tr>
<tr>
<td>31</td>
<td>7.03</td>
<td>FT-IR spectral data of Rosiglitazone maleate and hollow microspheres (F3)</td>
<td>152</td>
</tr>
<tr>
<td>32</td>
<td>7.04</td>
<td>DSC thermograms data of Rosiglitazone maleate and hollow microspheres (F3)</td>
<td>154</td>
</tr>
<tr>
<td>33</td>
<td>7.05</td>
<td>Sphericity values of Rosiglitazone maleate hollow microspheres</td>
<td>157</td>
</tr>
<tr>
<td>34</td>
<td>7.06</td>
<td>Micromeritic properties of Rosiglitazone maleate hollow microspheres</td>
<td>160</td>
</tr>
<tr>
<td>35</td>
<td>7.07</td>
<td>In vitro % floating ability data of hollow microspheres</td>
<td>163</td>
</tr>
<tr>
<td>36</td>
<td>7.08</td>
<td>In vitro dissolution data of Rosiglitazone maleate hollow microspheres</td>
<td>168</td>
</tr>
<tr>
<td>37</td>
<td>7.09</td>
<td>Data of various parameters of model fitting of dissolution profiles of hollow microspheres (values of R², k and n) and mechanism of drug release</td>
<td>171</td>
</tr>
<tr>
<td>38</td>
<td>7.10</td>
<td>Stability study for drug content of Rosiglitazone maleate hollow microspheres(F3)</td>
<td>174</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Figure No.</th>
<th>Title of the Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.01</td>
<td>Diagrammatic representation of internal view of stomach</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3.02</td>
<td>Pictorial representation of the typical GI motility pattern in fasting state</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3.03</td>
<td>Picturisation of various gastroretentive formulations location in the stomach</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>3.04</td>
<td>Schematic localization of an intragastric floating system in the stomach</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>3.05</td>
<td>Hydrodynamically balanced system (HBS) showing gelatinous polymer barrier formation and drug release</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>3.06</td>
<td>Improvement in HBS</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>3.07</td>
<td>Swellable drug delivery systems</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>3.08</td>
<td>Different geometric forms of unfoldable systems</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>3.09</td>
<td>Different unfoldable systems and Gastroretentive dosage form before and after folding</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>3.10</td>
<td>Schematic localization of a high density system in the stomach</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>3.11</td>
<td>SEM photographs of microballoon and microparticle</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>3.12</td>
<td>Schematic presentation of the structure of low-density, floating matrix tablets</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>3.13</td>
<td>Intragastric floating drug delivery device</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>3.14</td>
<td>Intragastric floating tablet</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>3.15</td>
<td>Intragastric floating bilayer tablet</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>3.16</td>
<td>Schematic representation of gas-generating systems as monolayer drug delivery system</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>3.17</td>
<td>Schematic illustration of the barrier formed by a raft-forming system</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>3.18</td>
<td>Diagrammatic sketch of the device representing its operation mechanism(A,B,C,D)</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>3.19</td>
<td>Gas generating systems</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>3.20</td>
<td>Floating pills a) The penetration of water into effervescent layer leads to a CO₂ generation and makes the system to float (b) Mechanism of floatation</td>
<td>34</td>
</tr>
<tr>
<td>21</td>
<td>4.01</td>
<td>UV-Spectra of Verapamil hydrochloride in pH 1.2 hydrochloric acid buffer</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>4.02</td>
<td>Standard plot for Verapamil hydrochloride in pH 1.2 hydrochloric acid buffer</td>
<td>71</td>
</tr>
<tr>
<td>23</td>
<td>4.03</td>
<td>UV-Spectra of Rosiglitazone maleate in pH 1.2 hydrochloric acid buffer</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>4.04</td>
<td>Standard plot for Rosiglitazone maleate in pH 1.2 hydrochloric acid buffer</td>
<td>73</td>
</tr>
<tr>
<td>25</td>
<td>4.05</td>
<td>UV-Spectra of Losartan potassium in pH 1.2 hydrochloric acid buffer</td>
<td>74</td>
</tr>
<tr>
<td>Sl. No</td>
<td>Figure No.</td>
<td>Title of the Figure</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>26</td>
<td>4.06</td>
<td>Standard plot of Losartan potassium in pH 1.2 hydrochloric acid buffer</td>
<td>75</td>
</tr>
<tr>
<td>27</td>
<td>4.07</td>
<td>Diagrammatic representation of preparation of hollow microspheres by Quassi-emulsion technique</td>
<td>79</td>
</tr>
<tr>
<td>28</td>
<td>4.08</td>
<td>Administration of alloxan by I.P route</td>
<td>93</td>
</tr>
<tr>
<td>29</td>
<td>4.09</td>
<td>Administration of microspheres by oral gauze in suspension form</td>
<td>93</td>
</tr>
<tr>
<td>30</td>
<td>4.10</td>
<td>Blood collection from rat tail vein</td>
<td>94</td>
</tr>
<tr>
<td>31</td>
<td>5.01</td>
<td>FT-IR spectra of Losartan potassium & its floating matrix tablet formulation G-VI</td>
<td>101</td>
</tr>
<tr>
<td>32</td>
<td>5.02</td>
<td>DSC thermograms of Losartan potassium & its floating matrix tablet formulation G-VI</td>
<td>102</td>
</tr>
<tr>
<td>33</td>
<td>5.03</td>
<td>Photographs of in vitro floating behavior and dimensional changes of matrix tablet formulation</td>
<td>103</td>
</tr>
<tr>
<td>34</td>
<td>5.04</td>
<td>Photographs showing swelling of floating matrix tablet formulation in pH 1.2 HCl buffer</td>
<td>106</td>
</tr>
<tr>
<td>35</td>
<td>5.05</td>
<td>Swelling profile of floating matrix tablet formulations in pH 1.2 HCl buffer</td>
<td>107</td>
</tr>
<tr>
<td>36</td>
<td>5.06</td>
<td>In vitro drug release profile of Losartan potassium from floating matrix tablet formulations</td>
<td>110</td>
</tr>
<tr>
<td>37</td>
<td>5.07</td>
<td>X-ray images showing gastric retention of floating matrix tablet formulation G-VI in a rabbit model at different time intervals</td>
<td>114</td>
</tr>
<tr>
<td>38</td>
<td>5.08</td>
<td>% Drug content in the non effervescent floating tablet of Losartan potassium G-VI when stored at 25 ± 2 °C & 60 ± 5 % RH for 12 months</td>
<td>116</td>
</tr>
<tr>
<td>39</td>
<td>5.09</td>
<td>% Drug content in the non effervescent floating tablet of Losartan potassium G-VI when stored at 30 ± 2 °C/65 ± 5 % RH for 12 months</td>
<td>116</td>
</tr>
<tr>
<td>40</td>
<td>5.10</td>
<td>% Drug content in the non effervescent floating tablet of Losartan potassium G-VI when stored at 40 ± 2 °C & 75 ± 5 % RH for 6 months</td>
<td>117</td>
</tr>
<tr>
<td>41</td>
<td>6.01</td>
<td>FT-IR Spectra of effervescent floating tablet of Verapamil Hydrochloride (B1) and Verapamil hydrochloride pure drug</td>
<td>121</td>
</tr>
<tr>
<td>42</td>
<td>6.02</td>
<td>DSC thermograms of effervescent floating tablet of Verapamil hydrochloride (B1) and Verapamil hydrochloride pure drug</td>
<td>123</td>
</tr>
<tr>
<td>43</td>
<td>6.03</td>
<td>Effect of amount Sodium bicarbonate on floating lag time of effervescent floating tablet of Verapamil hydrochloride (B1)</td>
<td>125</td>
</tr>
<tr>
<td>44</td>
<td>6.04</td>
<td>Photographs of in vitro floating behavior of effervescent floating tablet at different time intervals</td>
<td>126</td>
</tr>
<tr>
<td>45</td>
<td>6.05</td>
<td>Effect of various concentrations of ingredients on swelling index of floating tablets of Verapamil hydrochloride at the end of 8 h</td>
<td>130</td>
</tr>
<tr>
<td>Sl. No</td>
<td>Figure No.</td>
<td>Title of the Figure</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>46</td>
<td>6.06</td>
<td>Swelling behavior of effervescent floating tablet of Verapamil hydrochloride subjected to dissolution testing from 0-8h</td>
<td>130</td>
</tr>
<tr>
<td>47</td>
<td>6.07</td>
<td>In vitro drug release profiles of Verapamil hydrochloride effervescent floating tablets (B1-B6)</td>
<td>134</td>
</tr>
<tr>
<td>48</td>
<td>6.08</td>
<td>In vitro drug release profiles of Verapamil hydrochloride effervescent floating tablets (B7-B13)</td>
<td>134</td>
</tr>
<tr>
<td>49</td>
<td>6.09</td>
<td>X-ray images showing gastric retention of effervescent floating tablet (B1) in a rabbit model at different time intervals</td>
<td>138</td>
</tr>
<tr>
<td>50</td>
<td>6.10</td>
<td>% Drug content in the effervescent floating tablet of Verapamil hydrochloride (B-1) when stored at 25 ± 2 °C & 60 ± 5 % RH for 12 months</td>
<td>140</td>
</tr>
<tr>
<td>51</td>
<td>6.11</td>
<td>% Drug content in the effervescent floating tablet of Verapamil hydrochloride (B-1) when stored at 30 ± 2 °C/65 ± 5 % RH for 12 months</td>
<td>141</td>
</tr>
<tr>
<td>52</td>
<td>6.12</td>
<td>% Drug content in the effervescent floating tablet of Verapamil hydrochloride (B-1) when stored at 40 ± 2 °C/75 ± 5 % RH for 06 months</td>
<td>141</td>
</tr>
<tr>
<td>53</td>
<td>7.01</td>
<td>Prepared Rosiglitazone maleate hollow microspheres</td>
<td>144</td>
</tr>
<tr>
<td>54</td>
<td>7.02</td>
<td>Bar graph of % encapsulation efficiency</td>
<td>150</td>
</tr>
<tr>
<td>55</td>
<td>7.03</td>
<td>Bar graph of % drug loading</td>
<td>150</td>
</tr>
<tr>
<td>56</td>
<td>7.04</td>
<td>FT-IR spectra of Rosiglitazone maleate and hollow microspheres (F3)</td>
<td>152</td>
</tr>
<tr>
<td>57</td>
<td>7.05</td>
<td>DSC thermograms of Rosiglitazone maleate pure drug and hollow microspheres (F3)</td>
<td>154</td>
</tr>
<tr>
<td>58</td>
<td>7.06</td>
<td>Scanning electron microscopic photograph of microspheres at different magnifications</td>
<td>155</td>
</tr>
<tr>
<td>59</td>
<td>7.07</td>
<td>Image using camera lucida showing sphericity of hollow microsphere at 10x magnification</td>
<td>156</td>
</tr>
<tr>
<td>60</td>
<td>7.08</td>
<td>Bar graph of particle size distribution of hollow microspheres</td>
<td>161</td>
</tr>
<tr>
<td>61</td>
<td>7.09</td>
<td>Particle size distribution curve of microspheres F3</td>
<td>161</td>
</tr>
<tr>
<td>62</td>
<td>7.10</td>
<td>Bar graph of in vitro % floating hollow microspheres</td>
<td>163</td>
</tr>
<tr>
<td>63</td>
<td>7.11</td>
<td>X-ray images showing floating ability of hollow microspheres at different time intervals in rabbits</td>
<td>165</td>
</tr>
<tr>
<td>64</td>
<td>7.12</td>
<td>In vitro drug release profile of Rosiglitazone maleate hollow microsphere (F1-F6)</td>
<td>169</td>
</tr>
<tr>
<td>65</td>
<td>7.13</td>
<td>In vitro drug release profile of Rosiglitazone maleate hollow microsphere (F7-F11)</td>
<td>169</td>
</tr>
<tr>
<td>66</td>
<td>7.14</td>
<td>Comparison of in vivo plasma glucose levels in alloxan-induced diabetic albino rat following oral administration of pure drug (group III) and Rosiglitazone maleate hollow microsphere F3 (group IV), with plasma glucose levels of normal rat (group I) and alloxan-induced diabetic rat without drug (group II)</td>
<td>173</td>
</tr>
<tr>
<td>Sl. No</td>
<td>Figure No.</td>
<td>Title of the Figure</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>67</td>
<td>7.15</td>
<td>% Drug content in the hollow microsphere of Rosiglitazone maleate (F3) when stored at 25 ± 2 °C & 60 ± 5 % RH for 12 months</td>
<td>175</td>
</tr>
<tr>
<td>68</td>
<td>7.16</td>
<td>% Drug content in the hollow microsphere of Rosiglitazone maleate (F3) when stored at 30 ± 2 °C & 65 ± 5 % RH for 12 months</td>
<td>175</td>
</tr>
<tr>
<td>69</td>
<td>7.17</td>
<td>% Drug content in the hollow microsphere of Rosiglitazone maleate (F3) when stored at 40 ± 2 °C & 75 ± 5 % RH for 12 months</td>
<td>176</td>
</tr>
</tbody>
</table>