CHAPTER 8
REFERENCES


7. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system, Guidance for industry, USFDA, CDER, Aug 2000


10. Banker and Rhodes, Modern pharmaceutics, 121, fourth edition, Marcel Dekker, PP 84-86

11. Brahmankar and Jaiswal et al, Biopharmaceutics and pharmacokinetics- a treatise, first edition, Vallabh prakashan, Delhi, PP 18
REFERENCES


20. C. Mbah, Solubilization of valsartan by aqueous glycerol, polyethylene glycol and micellar solutions, Pharmazie, 61 (4), 2006, PP 322-324

22. S. Han et al, Solubilization of Biphenyl Dimethyl Dicarboxylate by Cosolvency, Drug Development and Industrial Pharmacy, 25 (11), 1999, PP 1193–1197


REFERENCES


32. B. Rabinow, Nanosuspensions in Drug Delivery, Nature Reviews Drug discovery, 3 (9), 2004, PP 785–796


38. T. Young et al, Rapid Expansion from Supercritical to Aqueous Solution to Produce Submicron Suspensions of Water-Insoluble Drugs, Biotechnology Progress, 16 (3), 2000, PP 402–407


42. J. Vaughn et al, Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into aqueous solution and spray freezing into liquid technologies, Drug Development and Industrial Pharmacy, 32(5), 2006, PP 559-567


44. V. Hoffart et al, Oral bioavailability of a low molecular weight heparin using a polymeric delivery system, Journal of Controlled Release, 113 (1), 2006, PP 38-42

45. M. Gonzalez et al, Nanoencapsulation of acetyl salicylic acid within enteric polymer nanoparticles, Reviews on Advanced Materials Science, 17, 2008, PP 71-75

46. C. Pinto Reis et al, Nanoencapsulation I Methods for preparation of drug loaded polymeric nanoparticles, Nanomedicine, 2, 2006, PP 8-21

REFERENCES


56. Atacand, Product monograph, Astrazeneca, Canada, 2008


REFERENCES


60. http://www.scirus.com/

61. United States pharmacopeia 32, NF 27, 2009


64. L. Zhang et al, HPLC-UV simultaneous determination of candesartan cilexetil and hydrochlorothiazide in compound candesartan cilexetil tablets, Chinese journal of Pharmaceutical Analysis, 27 (4), 2007, PP 566-568


68. J. Szejtli, Past, present and future of cyclodextrin research, Pure and applied chemistry, 76(10), 2004, PP 1825-1845


72. C.Gazpio et al, HPLC and solubility study of the interaction between pindolol and cyclodextrins, Journal of Pharmaceutical and Biomedical Analysis, 37, 2005, PP 487-492


78. United States Patent 7259153, Chang, Rong-Kun, Drug formulation and delivery using crystalline methylated cyclodextrins


83. P. Chaudhari et al, Solubility enhancement of hydrophobic drugs using synergistically interacting cyclodextrin and cosolvents, Current science, 92(11), 2007, PP 1586-1591

84. US patent 545721, J Szefl et al, inclusion complexes of taxol or taxotere or taxus extract formed with cyclodextrins, its preparation and use


<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES


102. Xianhong Wen et al, Preparation and study the 1:2 inclusion complex of carvedilol with beta cyclodextrin, 34, 2004, PP 517-523

103. K. Waleczek et al, Phase solubility study of pure (-)-α-bisabolol and camomile essential oil with β cyclodextrin, European Journal of Pharmaceutics and Biopharmaceutics, 55(2), 2003, PP 247-251


REFERENCES


107. V.Yadav et al, Enhancement of solubility and dissolution rate of BCS class II pharmaceuticals by nonaqueous granulation technique, International Journal of Pharma Research and Development-online, 12, Feb 2008, PP 1-12


114. A.Karmarkar et al, Liquisolid technology for dissolution rate enhancement or sustaining release, Expert opinion on drug delivery, 7(10), 2010, PP 1227-1234

115. A.Nokhodchi et al, Drug release from liquisolid systems: speed it up, slow it down, Expert opinion on drug delivery, Expert opinion on drug delivery, 8(2), 2011, PP 191-205
REFERENCES


120. S. Tayel et al, Improvement of dissolution properties of carbamazepine through application of the liquisolid tablet technique, European Journal of Pharmaceutics and Biopharmaceutics, 69 (1), 2008, PP 342-347


122. B. Akinlade et al, Liquisolid systems to improve the dissolution of furosemide, Scientia Pharmaceutica, 78, 2010, PP 325-344


REFERENCES


128. N. Tiong et al, Effects of liquisolid formulations on dissolution of naproxen, European Journal of Pharmaceutics and Biopharmaceutics, 73 (3), 2009, PP 373-384

129. Material safety data sheet, Tween 20, Cayman Chemical Company, 30th June 2005


REFERENCES

144. C. Goddeeris et al., Correlation between digestion of lipid phase of SMEDDS and release of the anti-HIV drug UC 781 and the anti-mycotic drug enilconazole from SMEDDS, European Journal of Pharmaceutics and Biopharmaceutics, 66, 2007, PP 173-181


147. Q. Jing et al., HPLC determination of anethoetrithione and its application to the pharmacokinetics in rabbits, Journal of Pharmaceutical and Biomedical Analysis, 42, 2006, PP 613-617

148. P. Postolache et al., Cyclosporin bioavailability of two physically different oral formulations, European review for medical and pharmacological sciences, 6, 2002, PP 127-131


150. Wei Wu et al., Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system, European Journal of Pharmaceutics and Biopharmaceutics, 63, 2006, PP 288-294

152. Jong Soo Woo, Reduced food effect and enhanced bioavailability of a self microemulsifying formulation of itraconazole in healthy volunteers, European Journal of Pharmaceutical Sciences, 33, 2008, PP 159-165


156. A. Patel et al, Preparation and in vivo evaluation of SMEDDS (Self-Microemulsifying Drug Delivery system) containing finofibrate, The AAPS Journal, 9 (3), 2007, Article 41, PP E344-E352


162. T. Yasuji et al, Particle design of poorly water soluble drug substances using supercritical fluid technologies, Advanced drug delivery reviews, 60, 2008, PP 388-398

163. E. Reverchon et al, Production of micro and nano particles by supercritical antisolvent precipitation, Powder Technology, 106 (1-2), 1999, PP 23-29


165. H. Hassan et al, Enhancement of dissolution amount and in vivo bioavailability of itraconazole by complexation with beta cyclodextrin using supercritical carbon dioxide, Journal of Pharmaceutical and biomedical analysis, (article accessed online)


168. C. Kalogiannis et al, Production of amoxicillin microparticles by supercritical antisolvent precipitation, Industrial and engineering Chemistry research, 44 (24), 2005, PP 9339-9346


171. C. Kalogiannis et al, Production of amoxicillin microparticles by supercritical antisolvent precipitation, Industrial and Engineering Chemical Research, 44 (24), 2005, PP 9339-9346

172. E. Reverchon et al, Supercritical antisolvent precipitation of cephalosporins, Powder Technology, 164 (3), 2006, PP 139-146


190. www.eudragit.evonic.com


196. M.Gonzalez et al, Nanoencapsulation of acetyl salicylic acid within enteric polymer nanoparticles, Reviews on Advanced Materials Science, 17, 2008, PP 71-75


201. N. Erk, Simultaneous analysis of candesartan cilexetil and hydrochlorothiazide in human plasma and dosage forms using HPLC with a photodiode array detector, Journal of Liquid Chromatography and Related Technologies, 26 (15), 2003, PP 2581-2591
