4. Face & Iris Recognition

Face as a biometric trait has universality and very low degree of cooperation requirement, on the other hand though iris recognition systems require elevated degree of cooperation from the user accuracy is high. Both face and iris based biometric systems are gaining popularity due to their use in surveillance and screening systems at places like airports, bus & railway stations, public places etc. Iris recognition systems are gaining importance due to its use in electronic recognition passports by various countries. In this chapter we discuss different techniques based on image processing for face and iris recognition.

4.1 Face Recognition

Among all biometrics listed previously, face belongs to both physiological and behavioral categories. In addition face has advantage over other biometrics because it is a natural, non-intrusive, and easy-to-use biometric. Probably the most important feature of a biometric is its ability to collect the signature from non-cooperating subjects. Besides applications related to identification and verification such as access control, law enforcement, ID and licensing, surveillance etc., face recognition is also useful in human-computer interaction, virtual reality, database retrieval, multimedia, computer entertainment etc. Face recognition mainly involves the following three tasks [229], [230]:

- **Verification** - The recognition system determines if the query face image and the claimed identity match.

- **Identification** - The recognition system determines the identity of the query face image by matching it with a database of images with known identities, assuming that the identity of the query face image is inside the database.

- **Watch list** - The recognition system first determines if the identity of the query face image is in the stored watch list and, if yes, then identifies the individual.

We have implemented face recognition systems using Gabor filter response of face image, LBG Clustering Algorithm, Kekre’s Median Codebook Generation Algorithm (KMCG) & Kekre’s Fast Codebook Generation (KFCG) based vector quantization is also implemented for feature vector extraction. In another variation we
have implemented previously used Kekre’s Wavelet & Haar Wavelet Energy Entropy based feature extraction for face recognition. We now discuss these techniques in detail in the next sections.

4.1.1 Face Recognition using Gabor Filters

Many researchers have used Gabor filters for face recognition. As the data generated in case of Gabor filter based approach is huge dimensionality reduction techniques such as PCA, LDA Fischer analysis are required to be used along with Gabor filter response. This requires heavy processing power. Here we have developed a system by using Gabor Filter response directly; such system [241] is used by authors for Content Based Image Retrieval (CBIR). Advantage of such system is less complexity & comparatively reduced processing requirements suitable for handheld devices. Handheld devices have less memory & computing power, small size of feature vector and lesser computations make current system suitable for handheld device such as PDA & Windows CE mobile phone.

Gabor filters are bandpass filters which have both orientation-selective and frequency-selective properties and have optimal joint resolution in both spatial and frequency domains [193], [208], [209]. We have used Gabor filters for segmentation of fingerprints in Section 3.1.1.2. A Gabor filter has the following general form in the spatial domain [193].

\[
h(x, y, \theta_k, f, \sigma_x, \sigma_y) = \exp\left\{-\frac{1}{2} \left[\frac{x_{\theta_k}^2}{\sigma_x^2} + \frac{y_{\theta_k}^2}{\sigma_y^2} \right] \right\} \exp(i2\pi fx_{\theta_k})
\]

(4.1)

Where \(x_{\theta_k} = x \cos \theta_k + y \sin \theta_k\), and \(y_{\theta_k} = -x \sin \theta_k + y \cos \theta_k\),

This filter consist of a Gaussian envelope (of parameters \(\sigma_x\) and \(\sigma_y\)) modulated by a sinusoid of frequency \(f\) along the direction of the \(x_\theta\) axis. The angle \(\theta_k\) allows rotating the direction of the response. In case of face recognition the frequency \(f\) can be selected so as to capture texture information of the face. The value of \(\theta_k\) is given by

\[
\theta_k = \frac{\pi(k - 1)}{m}
\]

(4.2)

\(k = 1, \ldots, m\),

150
Where \(m \) denotes the number of orientations (Currently \(m = 8 \)). For each face image block of size \(W \times W \) centered at \((X, Y)\), with \(W \) even, we extract the Gabor Magnitude [207] as follows for \(k = 1, \ldots, m \):

\[
g(X, Y, \theta_k, f, \sigma_x, \sigma_y) = \left| \sum_{x_0=-W/2}^{(W/2)-1} \sum_{y_0=-W/2}^{(W/2)-1} I(X + x_0, Y + y_0) h(x_0, y_0, \theta_k, f, \sigma_x, \sigma_y) \right|
\]

(4.3)

Where, \(I(x, y) \) denotes the gray level of the pixel \((x, y)\) taken as average of the R, G, B components of the image. As a result, we obtain \(m \) Gabor features for each \(W \times W \) block of the image. In blocks with high texture content, the values of one or several Gabor features will be higher than the others (those values whose filter angle is similar to the ridge angle of the block). If the block is noisy or having non-oriented background, the \(m \) values of the Gabor features will be similar. Therefore, the standard deviation ‘\(Sd \)’ of the ‘\(m \)’ Gabor features allows capturing of local texture information.

4.1.1.1 Gabor Filter Based Feature Vector Generation

We are using 8 Directions of the Gabor Filters (\(K=0 \) to \(7 \)), the angle values are \(\{\theta = 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5\} \). We have selected the frequency by empirical study. The frequency values are selected so as to capture maximum texture information and give maximum matching.

![Gabor Filter Standard Deviation Maps](image)

Fig. 4.1. Gabor Filter Standard Deviation Maps of an Input face Image (a) Input face Image (b) \(f=4 \) Pixel/Cycle (c) \(f=8 \) Pixel/Cycle (d) \(f=10 \) Pixel/Cycle (e) \(f=12 \) Pixel/Cycle (f) Snapshot of Gabor Filter SD Values for one Row (frequency = 4 Pixel/cycle).
We are using 4, 8, 10, 12 pixel/cycle as the frequency values. Input Face image is selected and scaled to 256x256 pixels or the Face is selected through a 256x256 window. Gaussian envelope (of parameters σ_x and σ_y) are taken as $\sigma_x = 4$ and $\sigma_y = 4$. The block size is 16x16 pixels ($W \times W$).

For each frequency value we get 8 Gabor Filter Response arrays of size 16 X 16, for each block 8 values of filter response are available, we calculate standard deviations of these values as discussed previously. For four different frequency values we get four different arrays for standard deviation of Gabor filter response. Fig. 4.1 shows a typical face image and its corresponding Gabor Filter Standard Deviation maps for four frequency values (4, 8, 10, and 12). This four standard deviation arrays are used as a feature vectors for face. The steps for feature extraction are as listed below.

1. Read the face image, select the ROI. Scale the selected part to 256X256 pixels size.
2. Divide the selected face into 16X16 pixels size blocks.
3. For each block find Gabor Filter response for four different scales (frequency) of 4, 8, 10, 12 pixels/cycle and eight different values of filter angle \{\theta = 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5\}. Store this response in a Multi-dimensional array of size [Angle, Scale, Width/W, Height/W] (Width=Height=256, W=16).
4. For each Scale find Standard Deviation S_d for Gabor Filter response of 8 angles, We will get four different set of values for four different scales. Store these values in a 3-D array of size [Scale, Width/W, and Height/W]. For 8 Scales the typical feature vector size is 8*16*16=1024 elements.
5. For each user account read ‘N’ training faces with different poses or expressions. Repeat steps 1 to 5 for calculating feature vector. Save this data on disk.

We are using K-Nearest Neighborhood (KNN) classifier to find classifying faces & Euclidian Distance between two feature vectors $FV_1(s, i, j)$ & $FV_2(s, i, j)$ is used for calculating matching distance.

$$\text{Matching Distance} = \sqrt{\sum_{s=0}^{3} \sum_{i=0}^{w-1} \sum_{j=0}^{w-1} (FV_1(s, i, j) - (FV_2(s, i, j))^2} \quad (4.4)$$
4.1.1.2 Results

We have tested this method on Faces94 database given by Computer Vision Research Project [242]. We have enrolled 19 persons in the database, for each person we have enrolled 5 images for training. Another important point is that the feature vector has only integer numbers making computation faster. K-NN Classifier using Euclidian distance between Gabor filter based feature vector as a classifying metric was implemented. The method is tested on 250 different images from the database. It was observed that the accuracy of algorithm goes on reducing as number of enrolled users increased. For a set of 20 users the accuracy is 61%.

A query image and corresponding output of K-NN classifier is shown in Table 4.1. First output image is the correct user to which the query image belongs. When number of user increase the accuracy (Correct Classification Ration CCR) goes on decreasing. We have calculated the correct classification rate for a set of users in the database, every time some users are added this CCR is recalculated the analysis is shown in Fig 4.3.
Table 4.1
Gabor Filter Based Feature Vector Matching Results

<table>
<thead>
<tr>
<th>Sr.</th>
<th>User ID</th>
<th>Euclidian Distance</th>
<th>Face Image</th>
<th>Sr.</th>
<th>User ID</th>
<th>Euclidian Distance</th>
<th>Face Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2488.13</td>
<td></td>
<td>11</td>
<td>2</td>
<td>3210.055</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>2694.148</td>
<td></td>
<td>12</td>
<td>7</td>
<td>3295.293</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2817.013</td>
<td></td>
<td>13</td>
<td>16</td>
<td>3316.592</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>2828.696</td>
<td></td>
<td>14</td>
<td>19</td>
<td>3374.795</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>2868.473</td>
<td></td>
<td>15</td>
<td>4</td>
<td>3389.334</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2906.812</td>
<td></td>
<td>16</td>
<td>10</td>
<td>3446.614</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>2914.684</td>
<td></td>
<td>17</td>
<td>3</td>
<td>3483.307</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>2973.192</td>
<td></td>
<td>18</td>
<td>1</td>
<td>3549.518</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>2981.152</td>
<td></td>
<td>19</td>
<td>12</td>
<td>3663.646</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>3108.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Query
Fig. 4.3. Correct Classification Rate (CCR) Vs. Number of Enrolled Users. Graph Showing Decrease in Accuracy as Enrolled Users Increase.

The analysis shows that the accuracy of the system is poor for high number of users, but at less number of users the system provides good accuracy. This system is suitable for access control of handheld devices and laptops where operating users are very less in number. We have implemented this algorithm for Pocket PC running Windows CE 2003 using Visual C# 2005. Fig.4.4. Show this program running on a Pocket PC. A sample test for successful and a failure matching is also shown. With a good classifier and database interface this algorithm can be implemented in smart phones and Pocket PC’s, one such implementation is tested on HTC windows mobile phone.

We now discuss next approach which uses wavelets for extracting texture information from face image. Previously we have used this approach for palmprint and finger-knuckle print recognition. We have extended this approach for face recognition and analysis is presented here.
Fig. 4.4. Face Recognition Application on Windows CE (a) Pocket PC Emulator (b) Running Application (c) Sample Test for Successful Match (d) Sample Test for Rejected Face Matching
4.1.2 Face Recognition using Kekre’s Wavelets

Wavelets are suitable for extracting texture content of an image. We have used Gabor filters in previous section for extracting texture information and used for matching faces, the accuracy of this approach is low and not suitable for large population. We are using Kekre’s wavelets here to generate the feature vector extracting the texture information of the face. Here we are using wavelet energy feature for matching the faces, the face image is scaled to a size of 256X256 pixels and it is decomposed into 5 scales using Kekre’s wavelet. At each scale NXN wavelet matrix is generated by N/2 X N/2 size seed matrix and spreading factor of 2 (P=2). We have already discussed generation of Kekre’s Wavelets from Kekre’s transform (Section 3.1.2.1). We use Kekre’s wavelet as they are fast and newer family of wavelets as well as flexible to generate by different seed size and spreading factor. We are using 6 images for training, for each image we extract feature vector and use this in K-NN classifier. A typical set of user face images is shown in Fig. 4.5.

![Image](image_url)

Fig. 4.5. Typical User Training Data (a) Set of Images used for Enrolling User (b) Image used for Querying (c) Selected ROI (256X256 Pixels).
4.1.2.1 Feature Vector Generation

We follow the same procedure as followed to extract feature vector of palmprint images previously in section 3.2.3. The selected Region of Interest (ROI) size is 256X256 pixels. We perform 5 level decomposition as mention earlier. Fig. 4.6 shows first level decomposition of ROI. To capture local texture information in the facial region we divide the LH, HL & HH components into 4X4 non overlapping blocks, and sum the wavelet coefficients in this region. Hence at each level we get total 16x3 = 48 values and for 5 level decomposition we get a feature vector of 240 elements. Similar feature vector is extracted using Haar wavelet for comparison purpose.

![Image](image1)

Fig. 4.6. Dividing Wavelet Components into 4x4 Non-Overlapping Blocks

Only Horizontal, Vertical and Diagonal Components are divided into 4x4 blocks. Each component gives 16 values and per level we get 48 values of wavelet energy.

Fig. 4.7. shows plot of wavelet coefficients for the face shown in 4.5 (c), Fig. 4.7 (a) shows the feature vector normalized by sum of all wavelet coefficients and Fig. 4.7 (b) shows feature vector normalized level wise sum of wavelet coefficients. The ability of wavelet energy coefficients to classify biometric traits is discussed previously.
We analyze this method for following modes for both Kekre’s Wavelets & Haar Wavelets:

- **KFVN1 & KFVN2** – Kekre’s (Wavelet) Feature Vector Normalized by total Energy (KFVN1) & Normalized by level wise sum of Wavelet Energy (KFVN2), Euclidian Distance (ED) between two KWEFV sequences (Seq. X & Seq. Y).
- **WEC & WEL** – Wavelet Energy is calculated for each component (WEC) and for each level (WEL). For WEC we get $16 \times 3 = 48$ coefficients & for WEL we get 5 components, we evaluate Euclidian distance between these sequence.
- **RWEEC & RWEEL** – Here we use the above mentioned WEC and WEL sequence and convert them into probability distributions by normalizing. We evaluate Relative Energy Entropy between these sequences for matching faces. These feature vectors are hence termed and Relative Wavelet Energy Entropy Component wise (RWEEC) and Level wise (RWEEL).
- **RKEEF** – Relative Wavelet Energy Entropy for two normalized Kekre’s Wavelet feature Vectors directly. We take full wavelet energy coefficient sequence and normalize it by total energy. This distribution is then used for finding full sequence relative entropy. Hence it is termed as Relative Kekre’s (Wavelet) Energy Entropy for Full Sequence (RKEEF).

![Graph showing relative probability for matching distance of genuine and forgery tests for Kekre’s Wavelets based feature vectors.](image)

Fig. 4.8. Relative Probability for Matching Distance of Genuine and Forgery Tests for Kekre’s Wavelets based Feature Vectors. Two clear classes can be seen, with threshold distance as 85. This can be used for designing classifier.

4.1.2.2 Results

To justify the use of Kekre’s wavelet energy feature based feature vector we have performed a comparison of Euclidian distance between these feature vectors & that of Haar wavelets feature vectors. This is shown in Fig. 4.9. This shows sorted Euclidian distance (as per Kekere’s Wavelet FV) for performed tests (Test 1 to Test 100) on X-axis and the corresponding distance on Y-axis. First entry belongs to the matching face and further entries belong to other faces. Fig. 4.9(a) shows the distance comparison for all the features. The relative energy entropy based feature vector performance is best; this is shown separately in Fig. 4.9(b) along with that of Haar wavelets. We have also used weighted linear fusion of all the distances and the final Euclidian distance plot is shown in Fig. 4.9(c). All these graphs clearly show that the matching user has lowest distance with test feature vector. Kekre’s wavelet & Haar wavelets follow almost similar pattern.
Fig. 4.9. Normalized Distance for a Typical User (ID 24- First Entry) Face Identification Vs User ID (a) Kekre’s Wavelet Based Features (b) Relative Wavelet Energy Entropy Distance Shown Separately (c) Final Euclidian Distance
Next we perform FAR-FRR analysis for this method. In the database we enrolled 100 users and for each user 6 images were taken for training set. Total 410 tests are performed for intra-class matching and 8112 tests are performed for inter class matching. K-NN classifier based on the RWEE and Euclidian distance as discussed earlier was used. We give results for Kekre’s wavelets based feature vector first and then comparison is given.

- **KFVN1 & KFVN2**

 Both the normalization of Kekre’s Wavelet Feature Vector (Component wise and Full) give same error rates. We have got 93% PI for and 7% EER.

- **WEL & WEC**

 Wavelet Energy Values are calculated component wise and Level wise. These feature vectors are more general and fewer details are covered. The accuracy for these feature vectors is less. Here we evaluate the Euclidian distance between the feature vectors. WEL gives PI of 74% and 26% EER; these plots are shown in Fig. 4.11 & Fig. 4.12. WEC gives PI of 79% and 21% EER. Component wise feature vector has more details of the energy distribution than the level wise feature vector hence it has better PI.
The above mentioned Wavelet Energy Sequences are used to match the face by evaluating Relative Entropy here. We Evaluate relative entropy both level & component wise. The relative entropy gives better results in case of detailed wavelet energy distribution. We have got PI of 93.5 & EER of 6.5 % respectively for relative wavelet energy entropy component wise (RWEEC). This is shown in
Fig. 4.13. Fig 4.14 shows FAR-FRR plot of Relative Energy Entropy Level wise (RWEEL), the EER is 24% & PI is 76% which is lower than that of RWEEC.

![RWEEC FAR vs FRR Plot](image)

Fig. 4.13. Kekre’s Wavelet FAR-FRR Analysis Plot for RWEEC

![RWEEL FAR vs FRR Plot](image)

Fig. 4.14. Error Rate Analysis Plot for RWEEL FAR-FRR Plot

- **RKEEF**

 Relative Wavelet Energy Entropy for two normalized Kekre’s Wavelet feature Vectors directly. We evaluate to normalized Kekre’s Wavelet Energy sequences (240 Coefficients) and find the relative entropy between two sequences for matching. This approach has given best PI of 95% and that EER of 5%.
We have performed fusion of KFVN2, RWEEC & RKEEF scores for face recognition. The fused score analysis has given PI of 94% and 6% EER. In case of face recognition fusion has not given performance improvements as in case of previous biometrics, face images have lesser texture details as compared to fingerprint, palmprint & finger-knuckle prints.

Table 4.2 lists all the Equal Error Rates (EER) & PI for different feature vector combinations implemented for Kekre’s wavelets & Haar wavelets. The comparison chart is shown in Fig. 4.17. We have got maximum PI of 95% for Relative Kekre’s Energy Entropy Full (RKEEF) feature vector, and the lowest PI is 74% for (Kekre’s)
Wavelet Energy Entropy Level wise (WEEL). The fusion gives moderate performance with PI of 94%. This shows the superiority of Relative Wavelet Energy Entropy based classifier.

Table 4.2

PI Comparison for Different Feature Vectors Derived for Kekre’s Wavelet Energy Distribution

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Feature vector Type</th>
<th>Kekre’s Wavelets PI</th>
<th>Haar Wavelets PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fusion</td>
<td>94.00</td>
<td>90.50</td>
</tr>
<tr>
<td>2</td>
<td>KFVN2</td>
<td>93.00</td>
<td>90.20</td>
</tr>
<tr>
<td>3</td>
<td>RWEEL</td>
<td>76.00</td>
<td>74.00</td>
</tr>
<tr>
<td>4</td>
<td>RWEEC</td>
<td>93.50</td>
<td>88.50</td>
</tr>
<tr>
<td>5</td>
<td>WEEC</td>
<td>79.00</td>
<td>77.50</td>
</tr>
<tr>
<td>6</td>
<td>WEEL</td>
<td>74.00</td>
<td>73.50</td>
</tr>
<tr>
<td>7</td>
<td>RKEEF</td>
<td>95.00</td>
<td>91.40</td>
</tr>
</tbody>
</table>

Fig. 4.17. Comparison of EER for Kekre’s & Haar Wavelet based Feature Vector for Face Recognition

Relative Kekre’s Energy Entropy of Full Sequence (RKEEF) Based Feature Vector Gives Best Performance. This is Indicated by Red Bar

Kekre’s wavelets have given highest PI of 95 for Relative Energy Entropy of full sequence of the wavelet energy (RKEEF). Fusion gives next best performance. Haar wavelets give highest PI of 91.40 for Relative Energy Entropy of full sequence of the wavelet energy. Kekre’s wavelets give higher PI as it can be seen from Fig. 4.17.
Total 410 tests are performed for intra-class matching and 8112 tests are performed for inter class matching. K-NN classifier based on the RWEE and Euclidian distance as discussed earlier was used. This testing is carried for both Kekre's & Haar wavelets, the analysis is given above. Next we present the CCR for the above mentioned tests. Kekre’s wavelets have better CCR of 87.53% as compared to 85.67% of Haar Wavelets.

Table 4.3

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Feature Vector Extraction Method</th>
<th>Accuracy (CCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kekre’ Wavelets</td>
<td>87.53%</td>
</tr>
<tr>
<td>2</td>
<td>Haar Wavelets</td>
<td>85.67%</td>
</tr>
</tbody>
</table>

4.1.3 Face Recognition using Vector Quantization [128]

Vector Quantization (VQ) is an efficient clustering technique for data compression and has been successfully used in various applications such as image compression [235], speech recognition and face detection [236], real time applications such as real time video based event detection [237] and anomaly intrusion detection systems, image segmentation, speech data compression [234], content based image retrieval CBIR [238].

Various VQ algorithms differ from one another on the basis of the approach employed for cluster formations. VQ is a technique in which a codebook is generated for each image. A codebook is a representation of the entire image containing a definite pixel pattern [234] which is computed according to a specific VQ algorithm. This codebook can be used as a feature vector for biometric identification. The method most commonly used to generate codebook is the Linde-Buzo-Gray (LBG) algorithm which is also called as Generalized Lloyd Algorithm (GLA) [244]. We are using LBG, Kekre’s Median Codebook Generation Algorithm (KMCG) & Kekre’s Fast Codebook generation Algorithm (KFCG) for face recognition.

4.1.3.1 LBG Clustering [239]

Linde-Buzo-Grey (LBG) is an iterative clustering Algorithm. For the purpose of explaining this algorithm we are considering 2D vector space as shown in Fig. 4.18. In this figure each point represents two consecutive pixels dividing image into blocks of dimension 1x2. In this algorithm centroid is computed as the first codevector C_1 for the training set. In Fig. 4.18 two vectors v_1 & v_2
are generated by adding constant error to the codevector. Euclidean distances of all the training vectors are computed with vectors \(v_1 \) & \(v_2 \) and two clusters are formed based on nearest of \(v_1 \) or \(v_2 \). Procedure is repeated for these two clusters to generate four new clusters. This procedure is repeated for every new cluster until the required size of codebook is reached or specified MSE is reached. The drawback of this algorithm is that the cluster elongation is +135° to horizontal axis in two dimensional case. This results in inefficient clustering.

![Fig. 4.18. LBG for 2 Dimensional Case](image)

The database images are divided into the block of 2x2 pixels from each block are arranged in a single row. Then the mean of the each column is calculated. This mean value is a coordinate for the first codevector \(C_1 \). After that a constant error of +1 and -1 is added to the \(C_1 \) to get two more code vectors. The existing blocks are now compared with the newly generated code vectors \(C_1' \) and \(C_1'' \) respectively and for each of them the Euclidian distance is calculated. Whichever code vector gives minimum Euclidian distance the blocks are place in that particular cluster. So after first iteration two different and non-overlapping clusters are formed. For these clusters now the procedure is repeated to get clusters in multiple of two and code book is prepared.

4.1.3.2 Kekre’s Median Codebook Generation Algorithm

In [240] the Kekre & Sarode have proposed this algorithm for image data compression. This algorithm reduces the time for code book generation. It uses sorting and median technique for codebook generation.
In this algorithm image is divided into blocks and blocks are converted to the vectors of size \(k\). The Eqn. 4.5 given below represents matrix \(T\) of size \(M \times k\) consisting of \(M\) number of image training vectors of dimension \(k\). Each row of the matrix is the image training vector of dimension \(k\). The training vectors are sorted with respect to the first component of all the vectors i.e. with respect to the first column of the matrix \(T\) and the entire matrix is considered as one single cluster. The median of the matrix \(T\) is chosen (codevector) and is put into the codebook, and the size of the codebook is set to one. The matrix is then divided into two equal parts and each of the part is then again sorted with respect to the second component of all the training vectors i.e. with respect to the second column of the matrix \(T\) and we obtain two clusters both consisting of equal number of training vectors. The median of both the parts is picked up and written to the codebook, now the size of the codebook is increased to two, consisting of two codevectors and again each part is further divided to half. Each of the above four parts obtained are sorted with respect to the third column of the matrix \(T\) and four clusters are obtained and accordingly four codevectors are obtained. The above process is repeated till we obtain the codebook of desired size. Here quick sort algorithm is used. This algorithm takes least time to generate codebook, since Euclidean distance computation is not required.

Vector Quantization is basically the clustering algorithm, where the image is divided into pixel windows. These pixel windows give the texture information of the image. Smaller the window size finer texture details will be represented. Bigger pixel window gives coarse texture details of image. The better option is to select medium size of window as \(2\times2\) or \(3\times3\). Here we have divided images in \(2\times2\) pixel windows because we have used color images. The window is then converted into vector of size 12 to form training vector set, since for
3x3 window size the vector dimension will be 27 increasing computational complexity in that ratio. The Kekre’s Median Codebook Generation (KMCG) algorithm is applied on this set to get feature vector of size 128*12 for the face image.

4.1.3.3 KMCG Based Feature Vector Generation

Kekre & Shah have performed study of VQ Codebook size and its effect on face recognition [126]. Different codebook of size of 32, 64, 128 & 256 has been studied. It is found that codebook size of 256 gives best performance for local database used but it has marginal improvement over codebook of size 128 and their performance was equal for the ORL face database used. To reduce the size of feature vector we select codebook of size 128 elements.

Here the feature vector space has 128*12 numbers of elements. This is obtained using following steps of Kekre’s Median Codebook Generation (KMCG) algorithm

1. Image is divided into the windows of size 2x2 pixels (each pixel consisting of red, green and blue components).
2. These are put in a row to get 12 values per vector. Collection of these vectors is a training set.
3. The training set is sorted with respect to first column. The centre value of first column is used to divide the training set in two parts.
4. Further each part is then separately sorted with respect to second column to get two centre values.
5. The process of sorting is repeated till we get 128 centre values.
6. Using these centre values as codevectors, Codebook of size 128*12 is generated
7. The codebook is stored as the feature vector for the image. Thus the feature vector database is generated.
8. Query Execution- Here the codebook of size 128*12 for the query image is extracted using Kekre’s Median Codebook Generation Algorithm and the feature vector of query image is obtained. Then this feature set is compared with other feature sets in feature database using Euclidian distance as similarity measure.

4.1.3.4 Kekre’s Fast Codebook Generation Algorithm (KFCG)

Here the Kekre’s Fast Codebook Generation algorithm proposed in [234] for image data compression is used. This algorithm reduces the time for code book generation. Initially we have one cluster with
the entire training vectors and the codevector C_1 which is centroid. In the first iteration of the algorithm, the clusters are formed by comparing first element of training vector with first element of code vector C_1.

![Diagram](image)

Fig. 4.19. KFCG for 2 Dimensional Case

The vector X_i is grouped into the cluster 1 if $x_{i1} < c_{11}$ otherwise vector X_i is grouped into cluster 2 as shown in Fig. 4.19(a), Where codevector dimension space is 2. In second iteration, the cluster 1 is split into two by comparing second element x_{i2} of vector X_i belonging to cluster 1 with that of the second element of the codevector. Cluster 2 is split into two by comparing the second element x_{i2} of vector X_i belonging to cluster 2 with that of the second element of the codevector as shown in Fig. 4.19(b). This procedure is repeated till the codebook size is reached to the size specified by user. It is observed that this algorithm gives less error.
as compared to LBG and requires least time to generate codebook as compared to KMCG, as it does not require any computation of Euclidean distance. Codebook generation procedure is same as discussed in case of KMCG in previous section (Section 4.1.3.3).

4.1.3.5 Results

We have discussed LBG, KFCG and KMCG based feature vectors for face recognition. These algorithms are now applied to the compressed form of the database image and then to the query image and the apparent match are sent as the result. We are using Georgia Tech Database for this [243]. It consists of 750 images of 50 persons; each person has 15 face images as shown in Fig. 4.20. Out of these images 9 images are used for training and six images are used for testing. Each of these algorithms were implemented in MATLAB 7.0 on Intel Pentium Dual Core Processor (2.01 GHz), 2GB RAM on Windows XP Professional SP3.

![Database Images](image)

Fig. 4.20. Database Images (a) and (b) represents 15 Images of 2 Subjects in the Database

Accuracy shown here implies the number of correctly identified faces to the total number of images queried for recognition. This is summarized in Table 4.4 & Fig. 4.21.
Table 4.4
Comparison of the Different Algorithms Tested

<table>
<thead>
<tr>
<th>Feature Vector Extraction Method</th>
<th>PI</th>
<th>CCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBG (128*12)</td>
<td>91.00</td>
<td>89.00</td>
</tr>
<tr>
<td>KMCG (128*12)</td>
<td>92.70</td>
<td>89.67</td>
</tr>
<tr>
<td>KFCG (128*12)</td>
<td>95.20</td>
<td>93.00</td>
</tr>
</tbody>
</table>

As seen from the above results the accuracy obtained by KMCG & KFCG algorithms is better than LBG for the training set of 400 images and equivalent. KFCG is having highest accuracy and it is having advantage of speed over LBG & KMCG.

As seen from the above results the accuracy obtained by KMCG & KFCG algorithms is better than LBG for the training set of 400 images and equivalent. KFCG is having highest accuracy and it is having advantage of speed over LBG & KMCG.

In this section have discussed face recognition using Kekre’s Wavelets, LBG, KFCG and KMCG. Another approach is using Gabor filters magnitude but the application domain is for handheld devices. We have obtained high accuracy of 83.5 % for Kekre’s wavelets, 87.53 % for Haar wavelets, 89.67% using KMCG and 93% in KFCG. Thus KMCG is efficient as well as accurate making it ideal for face recognition for real time applications. In case of Wavelets, Kekre’s wavelets give higher accuracy as compared to Haar wavelets. Next we will discuss iris recognition methods.
4.2 Iris Recognition

Iris recognition enjoys universality, high degree of uniqueness and moderate user cooperation. This makes Iris recognition systems unavoidable in emerging security & authentication mechanisms. In today’s world, where terrorist attacks are on the rise, employment of infallible security systems is a must. The identification of a person or an individual on the basis of their biometric characteristics like fingerprint, face, speech, and iris is thus gaining importance. Iris recognition is one of the important techniques and it is rotation and aging invariant. Compared with other biometric features (such as face, voice, etc.), the iris is more stable and reliable for identification [131].

Iris is the central part of the eye surrounding the pupil. Iris Recognition is the analysis of the colored ring that surrounds the pupil [1]. The iris has unique structure and these patterns are randomly distributed; which can be used for identification of human being. Typical iris is shown in the eye image in the Fig. 4.22. With fast development of iris image acquisition technology, iris recognition is expected to become a fundamental component of modern society, with wide application areas in national ID card, banking, e-commerce, welfare distribution, biometric passport, and forensics, etc. Since 1990s, research on iris image processing and analysis has achieved great progress [1].

![Eye Image Showing Iris, Pupil & Sclera](image)

Fig. 4.22. Eye Image Showing Iris, Pupil & Sclera

Generally, iris recognition system consists of four major steps. They include image acquisition from iris scanner, iris image preprocessing, feature extraction and enrollment & recognition. Image acquisition is a very important process as iris image with bad
quality will affect the entire iris recognition process. One such system developed by center of biometrics & security research (http://www.cbsr.ia.ac.cn) is shown in Fig. 4.23(a); another such system using an iris capture device by OKI is shown in Fig. 4.23(b). Thus, it is critical to be implemented through good hardware design as well as software interface. Equally important is the iris image preprocessing step for mobile applications as the iris images taken by the users are less controllable as in the controlled laboratory environment. Improper iris image preprocessing can also influence the subsequent processes like feature vector extraction and enrollment & recognition [129].

![Iris Capture device developed by CBS](http://www.cbsr.ia.ac.cn) ![Iris Camera from OKI](http://www.cbsr.ia.ac.cn)

Fig. 4.23. (a) Iris Capture device developed by CBS (b) Iris Camera from OKI (http://www.cbsr.ia.ac.cn)

4.2.1 Iris Preprocessing

The iris preprocessing step needs to be robust and performs iris localization accurately. We have discussed various preprocessing methods previously. Daugman [130] made use of integro-differential operators for iris localization. The system by Tisse et al. [131] implemented the integro-differential operators and Hough transform for iris localization. Wildes [132] implemented a gradient-based edge detector (a generalized Hough transform) to detect local boundaries of an iris. Ma et al. [133] proposed a new algorithm which locates the center of pupil and uses it to approximate iris region before executing edge detection and Hough transform. Cui et al. [134] made use of the low frequency information from wavelet transform for pupil segmentation and localized the iris with integro-differential operator. Moreover, the eyelids detection was also performed after the eyelashes detection. These methods are used to define the area of iris which is later segmented for the feature extraction. We are using iris localization method based on
Circular Hough Transform. Iris Recognition is studied with and without localization.

The iris localization is a two-step process,

1. Find the canny edges of the iris image.
2. Apply Circular Hough Transform [133] to the canny edge image with iris parameters.
3. Locate the iris center by quantization of Hough Magnitude.

4.2.1.1 Canny Edge Detection of Iris Image

The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties to be used for further image processing. Canny edge detection is optimal with regards to the following criteria [46]:

1. **Detection**: The probability of detecting real edge points should be maximized while the probability of falsely detecting non-edge points should be minimized. This corresponds to maximizing the signal-to-noise ratio.
2. **Localization**: The detected edges should be as close as possible to the real edges.
3. **Number of responses**: One real edge should not result in more than one detected edge (one can argue that this is implicitly included in the first requirement).

With Canny’s mathematical formulation of these criteria, Canny’s Edge Detector is optimal for a certain class of edges (known as step edges). When applied for iris the canny edge detection gives output as shown in Fig. 4.24. This canny edge output of iris is used for Circular Hough Transform (CHT) based iris localization [232].

![Fig. 4.24. Canny Edge Detection (a) Iris Image from Phoenix Database [231] (b) Canny Edges of Iris Image](image-url)
4.2.1.2 Iris Localization using Circular Hough Transform [232]

Hough transform is a technique which can be used to isolate features of a particular shape within an image. Because it requires the desired features to be specified in some parametric form, the classical Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses etc. [46]. The main advantage of the Hough transform technique is that it is tolerant to gaps in feature boundary descriptions and is relatively unaffected by image noise. To detect the eye which is circular in shape the so called Circular Hough Transform is used as in equation,

\[(x - x_0)^2 + (y - y_0)^2 = r^2\] \(4.6\)

Where, \((x_0, y_0)\) is the coordinate of the circle center, \(r\) is the radius of the circle. The detection process starts with the local maxima in the group of the area of interest is assumed as the center of the circle.

![Hough Magnitude Plot for the Iris Edge Map Shown in Fig. 4.24 (b). (b) Localized Iris](image)

Fig. 4.25. Iris Localization (a) Hough Magnitude Plot for the Iris Edge Map Shown in Fig. 4.24 (b). (b) Localized Iris

The Hough magnitude is calculated for predefined radius of search. The phoenix database of iris is having iris radius in the range 220 to 260 pixels. The Hough magnitude is calculated for radius if 240 pixels (Average Value). If the linear indices among the minimum value of qualified pixel forming the circular shape, then that area is the iris region detected on the image. Every area of
interest is tested with this process for it occurs as an element of the circle component which is the iris region identified in the image.

This is done by thresholding of the Hough magnitude and selecting point satisfying the criteria of radius. Fig. 4.25 shows iris Hough magnitude map. The red region shows Hough Space points [232] satisfying the centroid criteria of circle with radius of 240 pixels. This map is then thresholded and the centroid of iris is localized. The iris localization process is shown in Fig. 4.25, this shows the localized iris circle on canny edge map as well as on the iris image. The localized iris parameters are used to unwrap the iris this is called as iris normalization.

First we will discuss methods without iris localization and then we compare results with iris localization.

4.2.1.3 Iris Normalization [233]

Localizing iris from an image delineates the annular portion from the rest of the image. The concept of rubber sheet modal suggested by Daugman [130], [233] takes into consideration the possibility of pupil dilation and appearing of different size in different images. For this purpose, the coordinate system is changed by unwrapping the iris and mapping all the points within the boundary of the iris into their polar equivalent as shown in Fig. 4.26. The mapped image has 240 × 360 pixels. It means that the step size is same at every angle. Therefore, if the pupil dilates the same points are picked up and mapped again which makes the mapping process stretch invariant [233]. Thus the following set of equations are used to transform the annular region of iris into polar equivalent,

\[
I(x(\rho, \theta), y(\rho, \theta)) \rightarrow I(\rho, \theta)
\] \hspace{1cm} (4.7)

\[
x_p(\rho, \theta) = x_{p\theta}(\theta) + r_p * \cos(\theta)
\] \hspace{1cm} (4.8)

\[
y_p(\rho, \theta) = y_{p\theta}(\theta) + r_p * \sin(\theta)
\] \hspace{1cm} (4.9)

\[
x_i(\rho, \theta) = x_{i\theta}(\theta) + r_i * \cos(\theta)
\] \hspace{1cm} (4.10)

\[
y_i(\rho, \theta) = y_{i\theta}(\theta) + r_i * \sin(\theta)
\] \hspace{1cm} (4.11)

Where \(r_p\) and \(r_i\) are respectively the radius of pupil and the iris, while \((x_p(\theta), y_p(\theta))\) and \((x_i(\theta), y_i(\theta))\) are the coordinates of the pupillary and limbic boundaries in the direction \(\theta\). The value of \(\theta\) belongs to \([0, 2\pi]\), \(\rho\) belongs to \([0, 1]\). The normalized iris is shown
in Fig. 4.26 (c). This is iris Region of Interested (ROI) segmented or Normalized Iris, this ROI can be used for feature extraction.

![Fig. 4.26. Unwrapping Iris (a) Input Iris Image (b) Localized Iris (c) Unwrapped (Normalized) Iris.](image)

Iris normalization gives better quality of input for the feature extraction process, this helps to improve the recognition rate. Iris recognition with and without normalization will be discussed in the next sections.

4.2.2 Iris Recognition using Vector Quantization [234]

We have discussed Vector Quantization techniques in previous section on face recognition. LBG clustering is conventional algorithm for vector quantization, while KFCG, KMCG are newer algorithms and they are quite popular. Here we apply KMCG & KFCG for iris feature vector extraction & matching, their performance is compared with the LBG clustering algorithm.

4.2.2.1 Proposed VQ based Iris Recognition Method

We have selected codebook of size 128. Thus the feature vector space has 128 x12 numbers of elements. Following are the steps to obtain the Feature vector database.

1. Image is divided into the windows of size 2x2 pixels (each pixel consisting of red, green and blue components).
2. These are put in a row to get 12 values per vector. Collection of these vectors is a training set (initial cluster).
3. Compute centroid (codevector) of the cluster.
4. Apply LBG/KMCG/KFCG algorithm to obtained codebook of size 128. The codebook obtained is stored as the feature vector for the image.
5. Query Execution- Here the codebook of size 128x12 for the query image is extracted using LBG/ KMCG /KFCG and the feature vector of query image is obtained. This feature set is compared with other feature sets in feature database using Euclidian distance.
4.2.2.2 Results for VQ based Methods

In any of the above implemented algorithms, we have not done any preprocessing on the iris images in the database or the query images. Also the images don’t solely contain the iris but also the sclera surrounding it. We have used phoenix database [246] consisting of irises of 64 individuals. Each individual has 3 images corresponding to the left and 3 images corresponding to the right eye. Six iris images in Portable Network Graphics (PNG) format of each individual were taken into consideration. Thus in all there were (64 X 6) 384 such images as a part of our database. We have resized each image to a 128 x 128 color pixels. Thus, we have a 3-dimensional array data for sized 128 x 128 x 3.

We have discussed LBG, KMCG & KFCG based feature vectors earlier. These algorithms are now applied to the database image and then to the query image and the apparent match are sent as the result. Each of these algorithms were implemented in MATLAB 7.0 on Intel Pentium Dual Core Processor (2.01 GHz), 2GB RAM on Windows XP Professional SP3.

For testing purpose we have retained two images each of left and right eye in the database and one image each is used as query image. Here we have tested the method by giving left/right query images which is checked for the entire database of left as well as right iris images. In few cases it has happened that the left query image has given best match with the right iris image of the same person, this is also treated as success.

The accuracy (CCR) is calculated as,

\[
\text{Accuracy for Left Eye} = \frac{N_1}{N_L} \times 100 \quad (4.13)
\]

\[
\text{Accuracy for Right Eye} = \frac{N_2}{N_R} \times 100 \quad (4.14)
\]

Where,

\(N_1=\) No. of correct individual identified for Left iris query images.
\(N_L=\) Total no. of Left iris images queried (64).
\(N_2=\) No. of correct individuals identified for Right iris images.
\(N_R=\) Total no. of Right iris images queried (64).
\(N=\) Total Number of Images in the database \((N_L+N_R)\) (128)

\[
\text{Overall Accuracy} = \frac{(N_1+N_2)}{N} \times 100 \quad (4.15)
\]
Table 4.5
Comparison of the Different VQ Algorithms Tested for Iris Recognition

<table>
<thead>
<tr>
<th>VQ Algorithm</th>
<th>PI-L</th>
<th>PI-R</th>
<th>CCR-L</th>
<th>CCR-R</th>
<th>PI-L+R</th>
<th>CCR-L+R</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBG</td>
<td>79.50</td>
<td>87.50</td>
<td>78.13</td>
<td>84.38</td>
<td>83.60</td>
<td>81.25</td>
</tr>
<tr>
<td>KMCG</td>
<td>85.20</td>
<td>87.50</td>
<td>83.50</td>
<td>85.30</td>
<td>89.20</td>
<td>87.10</td>
</tr>
<tr>
<td>KFCG</td>
<td>89.90</td>
<td>92.00</td>
<td>87.50</td>
<td>90.63</td>
<td>91.40</td>
<td>89.10</td>
</tr>
</tbody>
</table>

Fig. 4.27. Performance Comparison between LBG, KMCG & KFCG
Graph Shows PI, CCR for Left, Right and combined Iris Testing. Combined (L+R) Iris Recognition Gives Higher Performance. Performance of KFCG is Highest.

Here we have discussed Iris Recognition using Vector Quantization based on LBG, KMCG & KFCG Algorithms. We have implemented these algorithms on iris image without any pre-processing or segmentation including iris localization in spite of which it has been possible for us to obtain such a high accuracy. Table 4.5 & Fig. 4.27 show the comparison of the results. This is an example of multi-instance biometrics. We have tested left & right irises separately as well as combined testing is also done. KFCG has the best performance with the accuracy of 89.10% as compared to LBG and KPE. LBG has lowest PI & EER. If we combine these methods with iris pre-processing the results can still be improved. This is discussed next.
4.2.3 Iris Recognition using Walsh & DCT

In this section we discuss a novel iris recognition method which reduces the computational complexity and increases the accuracy. We have tested full 2-dimensional Discrete Cosine Transform (DCT), full 2-dimensional Walsh Transform (also known as Walsh Hadamard Transform (WHT)), and the proposed method DCT/WHT row mean and column mean.

4.2.3.1 Walsh Transform & DCT Based Feature Extraction

The DCT/WHT algorithm that we have used for our study on iris recognition is as shown below:

1. Read the database image (Size=128X128).
2. Extract the Red, Green and Blue component of that image such that each is of size 128X128.
3. Apply DCT/WHT to each component and append in a new row the result for each Red, Green and Blue in matrix form. So we get 128X384 entries. This is the Feature Vector (F.V) of that image.
4. Repeat steps 1 through 3 for every database image.
5. Read the Query image.
6. Repeat step 2 and 3 for the query image so as to obtain its Feature Vector.
7. For every Database image ‘i’ and a Query image ‘q’ Calculate the Mean Squared Error using the following formula:
 \[S.E. = \sum_{m=0}^{M-1} [FV(i) - FV(q)]^2 \]
 \[MSE[i] = SE \div (128*128*3) \]
8. Determine the minimum M.S.E and corresponding image matching iris.

We discuss the accuracy of this method in the results section, next we discuss the Proposed DCT/WHT row mean, and column mean based iris recognition method.

4.2.3.2 Row Mean & Column Mean of DCT& WHT Coefficients

Here we extend the study further by addition of one more feature based on Row & Column Mean of iris image data. This approach captures iris texture information by taking row wise & column wise mean. This is process is shown in Fig. 4.31. We take mean of grey levels of all pixels in i\(^{th}\) Row to calculate Row Mean (RM\(_i\)) of i\(^{th}\) row.
This gives Row Mean vector,
\[RM = \{RM_1, RM_2, \ldots, RM_m\} \quad (m= \text{No. of Rows}) \quad (4.18) \]

Similarly for columns we get the Column Mean Vector CM given by,
\[CM = \{CM_1, CM_2, \ldots, CM_n\} \quad (n= \text{No. of Columns}) \quad (4.19) \]

RM & CM are one dimensional (1D) vectors. We apply the one dimensional (1D) DCT & WHT on the vectors to generate 1D DCT Row Mean (RM) & Column Mean (CM) feature vector.

Fig. 4.28. Generation of Row Mean (RM) & Column Mean (CM) vector From Iris Image Grey Level Values \(C_{ij} \)

4.2.3.3 Proposed Iris Recognition Method

1. Read the database image (Size=128x128x3). Extract the Red, Green and Blue component of that image such that each is of size 128x128.
2. To prepare column mean vector. Here we take average of all intensity values of pixels in each column of iris image and construct a vector of all column means as discussed in previous section.
3. To prepare row mean vector. Here we take average of all intensity values of pixels in each row of iris image and construct a vector of all row means.
4. DCT / WHT Features of column mean vector. Apply DCT/WHT on the column mean vector of iris image and store the DCT/WHT coefficients as feature vector part one.
5. DCT / WHT Features of row mean vector. Apply DCT / WHT on the row mean vector of iris image and store the DCT / WHT coefficients as feature vector part two.
6. Matching of DCT / WHT features
part one and two are matched with all entries in the database DCT features part one and two respectively. Using squared Euclidian distance the best match is found.

4.2.3.4 Results for DCT/WHT Based Iris Recognition

In any of the above implemented algorithms, we have not done any preprocessing on the iris images in the database or the query images. Also the images don’t solely contain the iris but also the sclera surrounding it. We have used phoenix database [252] consisting of irises of 64 individuals. Each individual has 3 images corresponding to the left and 3 images corresponding to the right eye. Six iris images in Portable Network Graphics (PNG) format of each individual were taken into consideration. Thus in all there were (64 X 6) 384 such images as a part of our database. We have resized each image to a 128 x 128 color pixels. Thus, we have a 3-dimensional image sized 128 x 128 x 3.

Table 4.6
Results for DCT/WHT RM & CM based Iris Recognition
(a) Results for DCT Row Mean and Column Mean

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>PI</th>
<th>CCR</th>
<th>Total Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT</td>
<td>57.10</td>
<td>74.60</td>
<td>55.38</td>
</tr>
<tr>
<td>DCT-RM</td>
<td>68.60</td>
<td>81.70</td>
<td>64.25</td>
</tr>
<tr>
<td>DCT-CM</td>
<td>62.40</td>
<td>75.40</td>
<td>59.22</td>
</tr>
</tbody>
</table>

(b) Results for WHT Row Mean and Column Mean

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>PI</th>
<th>CCR</th>
<th>Total Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHT</td>
<td>62.00</td>
<td>75.20</td>
<td>59.38</td>
</tr>
<tr>
<td>WHT-RM</td>
<td>69.30</td>
<td>85.20</td>
<td>67.18</td>
</tr>
<tr>
<td>WHT-CM</td>
<td>81.20</td>
<td>82.90</td>
<td>65.62</td>
</tr>
</tbody>
</table>

We have discussed full 2-D DCT & WHT and Row mean, Column mean DCT & WHT based feature vectors earlier. These methods are now applied to the Phoenix database image and then to the query image and the apparent match are sent as the result. Each of these algorithms were implemented in MATLAB 7.0 on Intel Pentium Dual Core Processor (2.01 GHz), 2GB RAM on Windows XP Professional SP3. For testing purpose we have retained two images each of left and right eye in the database and one image each is used as query image. Table 4.6 gives the summary of performance of individual method tested. Finally we summarize the performance of all the iris
recognition systems discussed up till now and results are presented in Fig. 4.29.

![Performance Comparison of DCT & WHT based Iris Recognition Techniques](image.png)

Fig. 4.29. Performance Comparison for Iris Recognition Methods based on DCT/WHT Row Mean & Column Mean

In this section we have discussed iris recognition using full 2-D DCT, full 2-D Walsh transform, DCT on row/column mean and Walsh transform on row/column mean. We have implemented these algorithms on iris image without any pre-processing or segmentation including iris localization in spite of which it has been possible for us to obtain such a high accuracy. Row mean DCT/WHT gives the best performance with the accuracy of 74.96% for DCT & 75.78% for WHT. Full DCT & WHT has low accuracy around 64.21% for DCT & 66.10% for WHT. Another thing is that the combined Left+ Right iris is coming low because of large difference between CCR of left & right iris testing. This is shown in Table 4.6 (a) & (b). All the testing results indicate that the WHT has given better performance than DCT.
4.3 Iris Recognition with Preprocessing

In the previous sections iris recognition techniques based on Walsh & DCT as well as vector quantization algorithms have been discussed. These techniques were using iris images without preprocessing. The full iris image was considered for feature extraction, as the main part the iris texture pattern, the other part of the image besides texture pattern is useless. The iris normalization process helps to separate and unwrap the circular iris texture pattern. The effect of iris normalization is studied in this section.

4.3.1 VQ Based Feature Extraction

In the section 4.2.3.2 the Walsh transform and DCT is used for iris feature extraction, the unwrapped iris is used for feature extraction process. The dimension of unwrapped iris ROI is 240*360 pixels. After further removal of central dark part from the (pupil) the final ROI Dimensions are 180*360 Pixels, as shown in Fig. 4.26(c). This ROI is used for VQ based feature extraction. Here LBG, KMCG & KFCG clustering algorithms are used to generate the codebook feature vector. The testing is performed with the same test parameters as discussed previously. The test results are summarized in Table 4.7 & Fig. 4.30. Testing is performed on left, Right & Combined (Left + Right) iris. This is an example of multi-instance iris recognition. The iris recognition for Left + Right testing is shown in column of Total Performance. Total performance is higher that individual left & right iris recognition performance. Amongst the different VQ methods KFCG gives best performance by giving PI of 96.12%, EER of 3.88% & CCR of 95.18%. Next we discuss DCT/WHT based iris Recognition.

<table>
<thead>
<tr>
<th>VQ Algorithm</th>
<th>PI-L</th>
<th>PI-R</th>
<th>CCR-L</th>
<th>CCR-R</th>
<th>PI-L+R</th>
<th>CCR-L+R</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBG</td>
<td>87.50</td>
<td>81.90</td>
<td>86.21</td>
<td>80.36</td>
<td>86.90</td>
<td>86.70</td>
</tr>
<tr>
<td>KMCG</td>
<td>90.10</td>
<td>90.50</td>
<td>88.13</td>
<td>87.82</td>
<td>93.20</td>
<td>92.12</td>
</tr>
<tr>
<td>KFCG</td>
<td>92.00</td>
<td>92.70</td>
<td>91.21</td>
<td>90.01</td>
<td>96.10</td>
<td>95.18</td>
</tr>
</tbody>
</table>

Table 4.7
Comparison of the Different VQ Algorithms Tested for Iris Recognition with Preprocessing
4.3.2 Walsh Transform & DCT Based Feature Extraction

After proper scaling normalized iris ROI is used for row and column mean based feature extraction process discussed previously. The testing is performed on phoenix database used previously with same test parameters. Iris images for Left and Right eye are enrolled separately and individual as well as fusion based testing is performed. When both Left and Right iris images are used for testing of a single user, it is called as a multi-instance biometric system [21]. As compared to results given for DCT/WHT based feature vectors in Table 4.6, the results in Table 4.8 are higher. DCT Row mean has given higher performance index 90.89% and CCR of 89.21% in DCT based feature vector group. In case of WHT based group column mean feature vector gives higher performance, it gives 95.48% PI & 93% CCR. In both the cases of iris recognition with and without preprocessing, WHT has outperformed DCT based methods.

Next we discuss the performance improvement achieved due to preprocessing & normalization of Iris ROI. Fig. 4.31 & Table 4.9 summarize these results.
Table 4.8
Results for DCT/WHT RM & CM based Iris Recognition with Preprocessing

(a) Results for DCT Row Mean and Column Mean

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>PI</th>
<th>CCR</th>
<th>Total Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT</td>
<td>87.10</td>
<td>83.00</td>
<td>84.51</td>
</tr>
<tr>
<td>DCT-RM</td>
<td>89.10</td>
<td>89.60</td>
<td>87.39</td>
</tr>
<tr>
<td>DCT-CM</td>
<td>87.00</td>
<td>90.30</td>
<td>85.61</td>
</tr>
</tbody>
</table>

(b) Results for WHT Row Mean and Column Mean

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>PI</th>
<th>CCR</th>
<th>Total Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHT</td>
<td>89.90</td>
<td>90.00</td>
<td>87.01</td>
</tr>
<tr>
<td>WHT-RM</td>
<td>93.50</td>
<td>94.20</td>
<td>91.51</td>
</tr>
<tr>
<td>WHT-CM</td>
<td>91.90</td>
<td>92.10</td>
<td>90.70</td>
</tr>
</tbody>
</table>

Fig. 4.31. Performance Comparison Chart for Iris Recognition Methods
(a) % Accuracy (b) % Total Accuracy Comparison & % Improvement

Transform based techniques using full 2D DCT & WHT, Row & Column mean have higher margin of improvement over the VQ based techniques. Best performance is given by KFCG based technique it gives 95% accuracy. Fig. 4.31 shows comparison of the iris recognition methods with and without normalization. The
comparison between total accuracy (combining left & right iris image) is given.

Table 4.9
Performance Improvement in Total Accuracy (CCR) Achieved due to Iris Preprocessing & Normalization

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Total Accuracy (With Normalization)</th>
<th>Total Accuracy (Without Normalization)</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT</td>
<td>85.29</td>
<td>64.21</td>
<td>33</td>
</tr>
<tr>
<td>DCT-RM</td>
<td>89.21</td>
<td>74.96</td>
<td>19</td>
</tr>
<tr>
<td>DCT-CM</td>
<td>88.55</td>
<td>68.55</td>
<td>29</td>
</tr>
<tr>
<td>WHT</td>
<td>89.80</td>
<td>66.10</td>
<td>36</td>
</tr>
<tr>
<td>WHT-RM</td>
<td>92.40</td>
<td>75.78</td>
<td>22</td>
</tr>
<tr>
<td>WHT-CM</td>
<td>93.00</td>
<td>72.65</td>
<td>28</td>
</tr>
<tr>
<td>LBG</td>
<td>86.70</td>
<td>81.25</td>
<td>07</td>
</tr>
<tr>
<td>KMCG</td>
<td>92.12</td>
<td>87.10</td>
<td>06</td>
</tr>
<tr>
<td>KFCG</td>
<td>95.18</td>
<td>89.10</td>
<td>07</td>
</tr>
</tbody>
</table>

VQ based technique have achieved 6-7% improvements in the CCR due to iris normalization but the DCT/WHT based techniques have shown higher improvements. They show improvements in CCR in the range of 19-36%. DCT row mean based technique has given 19% improvement in CCR while full 2D WHT based technique has given 36% improvement. This is mainly because the full 2D transform of only ROI is taken and irrelevant part from iris image is not considered. The clustering techniques have marginal increase of 6-7%, as these techniques have advantage of clustering data the irrelevant part (White sclera) is clustered separately has lesser effect on the final feature vector. The iris preprocessing & normalization thus clearly gives improvement in the recognition performance by boosting the performance by at least 6% to maximum of 36%.

4.3.3 Iris Recognition using Kekre’s Wavelets

Kekre’s wavelets are orthogonal family of wavelets. The wavelets are fast and can be generated for non-standard size also. Kekre’s wavelets have been used effectively in section 3.1.2 for texture feature extraction of fingerprints, in section 3.2.3 & section 3.3.2 for feature extraction of palmprint & finger-knuckle print respectively. In another extension these wavelets are used for multiresolution analysis of face images also in section 4.1.2. Here
this approach is extended for iris feature vector extraction. As the iris ROI is rich in texture, the wavelets can be effectively used for feature vector extraction.

The selected Iris ROI size is scaled to 360 * 180 Pixels. We divide the ROI into three regions as follows. Region 1 & 2 are non-overlapping and region 3 is the central 180*180 pixels region overlapping with region 1 & 2. This arrangement is used for capturing localized texture information. Each block is the subjected to multiresolution analysis using Kekre’s wavelet up to three level of decomposition. Feature vector is extracted in same way as discussed for face in section 4.1.2 The normalized wavelet coefficients are stored in the database.

![Fig. 4.32. Three Blocks for Multiresolution Analysis (a) Iris ROI (360*180 Pixels scaled) (b) Three Regions of 180*180 Pixels each](image)

<table>
<thead>
<tr>
<th>Wavelets</th>
<th>PI</th>
<th>CCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>Kekre’s Wavelets</td>
<td>87.40</td>
<td>91.00</td>
</tr>
<tr>
<td>Haar Wavelets</td>
<td>85.90</td>
<td>88.60</td>
</tr>
</tbody>
</table>

Table 4.10
Performance Comparison of Kekre’s & Haar Wavelets for Iris Recognition
The feature vectors are extracted for enrollment of total 65 users. Left and Right iris images are considered separately. Per person three images for left as well as right iris are considered for enrollment. These images are taken for phoenix iris database [246]. Total 4200 tests were performed for genuine as well as forgery matching. Kekre’s Wavelets as well as Haar wavelets [228] are used for feature vector extraction and their performance is compared. Table 4.10 & Fig. 4.33 summarize the results for wavelet based iris recognition methods.

<table>
<thead>
<tr>
<th>Kekre’s Wavelets</th>
<th>Haar Wavelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.4</td>
<td>91</td>
</tr>
<tr>
<td>85.2</td>
<td>87.14</td>
</tr>
</tbody>
</table>

Fig. 4.33. Performance Comparison for Kekre’s & Haar Wavelets (PI & CCR of Kekre’s Wavelets is Higher than Haar Wavelets)

Kekre’s Wavelets have achieved 93.20% PI & CCR of 90.46% for left + Right iris testing. On the other hand Haar Wavelets have achieved 90.50% PI& CCR of 88.75% for left + Right iris testing. This shows that performance of Kekre’s wavelets is better than Haar wavelets. Combination of left & right iris feature vector is a multi-instance biometric feature vector and has better PR, EER & CCR than that of left & right iris.

In the next section Iris recognition using feature vector derived from Complex Walsh plane in transform domain is discussed, besides this Hartley transform, DCT, Kekre’s transform & Kekre’s wavelets are used to generate the complex plane using even & odd functions of intermediate transform.
4.3.4 Iris Recognition using Partitioned Complex Walsh Plane in Transform Domain

In section 3.1.3 a method which deals with fingerprint identification in the transform domain is discussed. The one-step Walsh transform i.e. either the row or the column transform of the fingerprint is subjected to partitioning to generate the feature vector. This process is based on Cal & Sal Functions of Walsh transform. This approach of extracting feature vector for Cal + jSal functions plot in complex plane is extended for iris recognition.

(a) (b)

(c) (d)

Fig. 4.34. Iris Normalization & its Complex Walsh Plane Plot (a)Input Iris Image (b) Normalized Iris (c) Partitioned Cal+jSal Function Plot of Row Transform (d) Partitioned Cal+jSal Function Plot for Column Transform

The iris image is normalized first and then the intermediate Walsh transform is taken; first we take the row transform and then the column transform is taken. As discussed previously the Intermediate Walsh transform is used to generate the complex Walsh plane, this plane is then Partitioned into 256 blocks (16x16). In each block the mean is calculated as well as DC component and
the last Seucy component is together treated as feature vector. Fig. 4.34 (c) & (d) shows the Partitioned complex Walsh plane for the Intermediate Walsh row & column transform respectively.

As discussed earlier each plot gives 2S+2 coefficients, we have 256 blocks in each plot, hence one plot gives 514 (256*2 +2) coefficients for each iris ROI. Similar Feature vector is generated for density of the points in complex Walsh Plane for each iris ROI input. This feature vectors are used for enrollment and matching of the iris.

To test the matching algorithm, 390 iris image samples collected from 65 persons (6 samples per person, 3 Left & 3 Right iris images) have been used. Total 3968 different tests are performed. Equal Error Rate (EER) is evaluated for FAR-FRR analysis as well as PI & CCR are also calculated. While testing the DC & Sequency components and its effect on matching is also evaluated. For each normalized iris ROI input the feature vector is generated in following variations

1. Row transform feature vector
 (Row TRF –L, Row TRF –R)
2. Column transform feature vector
 (Col TRF –L, Col TRF –R)
3. Row density feature vector
 (Row-Density-L, Row-Density-R)
4. Column density feature vector
 (Col-Density-L, Col-Density-R)
5. Fusion of above mention feature vectors with DC & Sequency components.
 (Row TRF + Density + DC SEQ Left,
 Row TRF + Density + DC SEQ Right)
6. Final Fusion of Left & Right Iris Feature Vectors- (Fusion)

The fusion is performed by score normalization. The normalization is performed by weighting the distance by specific coefficient decided empirically to give proper weightage to each feature vector. First the Row & Column transform, As well as Density based feature vectors are fused (Sr. 1 to Sr. 4) along with DC & Sequency values. This is a multi-algorithmic fusion. Performance is evaluated for left and right iris separately with individual as well as multi-algorithmic feature vectors.
Finally feature vectors of Left and Right iris are fused to implement a multi-instance fusion. For classification Euclidian distance based K-NN classifier is used. This algorithm is tested on a machine running Windows XP SP3, with AMD Athlon 64FX Processor running at 1880 MHz and 1.5 GB of RAM. The TAR-TRR plot for fused feature vector matching for left and right iris is shown in Fig. 4.35.

![Partitioned Walsh CAL SAL Function Based Iris Recognition Performance Comparison of PI](image)

Fig. 4.35. Performance Comparison for Feature Vector Variants of Partitioned Walsh Cal-Sal Functions Iris Recognition

Score Fusion based Matching Gives Higher Performance this is Indicated by Bar in Red Colour. The Orange Colour Bar Indicate the PI for Individual Left and Right Iris Feature Vector Fusion (TRF: Transform, FV: Feature Vector)

The Column & Row transform (Row TRF, Col TRF) based feature vector and Row & Column Density (Row Density, Col Density) based feature vectors have PI in the range of (79-85%). The fusion of the feature Vectors gives 86% PI for Left iris and 85% PI for Right iris, when Left & Right iris feature vectors are fused by score normalization the PI is increased to 86%. The CCR achieved by Left Iris fused FV, Right Iris fused FV & Left + Right Iris fused FV are 82%, 82.79%, 84 % respectively.

In the next section we continue this feature extraction mechanism for Even and Odd functions (similar to CAL & SAL function of Intermediate Walsh transform) of intermediate transforms of Hartley Transform, Kekre’s Transform, DCT & Kekre’s Wavelets for iris recognition.
4.3.5. Iris Recognition using Partitioned Complex Plane in Transform Domain of Hartley Transform, Kekre’s Transform, Discrete Cosine Transform and Kekre’s Wavelets

The Cal & Sal functions are used to plot (Cal + jSal) points of intermediate Walsh transform in complex Walsh plane. In previous section 3.1.4 this study is further extended for other transforms. Here the same mechanism is used for iris feature vector extraction.

4.3.5.1 Iris Recognition using Partitioned Hartley Plane in Transform Domain

The intermediate Hartley transform is generated by taking transform of rows first and then the even and odd rows of this transforms are used for generating the coefficients for (Even + jOdd) complex plane plot. These functions are similar to Cal & Sal functions as used to generate the (Cal + jSal) complex plane. The complex plane for Hartley transform is shown in Fig. 4.38. Plots for (Even + jOdd) function points of full finger as well as core point ROIs are shown. The feature vector as discussed earlier are extracted from them and used for matching in exactly same way as discussed for Walsh transform. The performance comparison of the feature vectors is shown in Fig 4.36.

(a) (b)

Fig. 4.36. Partitioned Complex Hartley Plane of Normalized Iris
(a) Row Transform Function Plot (b) Column Transform Complex Function Plot

The performance index (PI) of Hartley transforms Even Odd function based feature vector is in the range of 68% to 88%. Row density
based feature vector gives best PI of 88% for left iris testing. Row transform based feature vector for right iris gives lowest PI of 68%. When fusion is performed the Left & Right Iris testing gives 82 & 84 % EER. This is lower as compared to 88% of maximum, this is because the PI range is high (68% to 88%). The final fusion PI is also low and it is around 75%. Finally the accuracy or CCR obtained for Left, Right Iris and Fusion of Left + Right iris feature vectors (Last three columns) were 79.27%, 78.1%, 74.4% respectively under the same test scenario as discussed for Walsh transform.

Fig. 4.37. Performance Comparison for Feature Vector Variants of Partitioned Hartley Odd Even Functions Iris Recognition
The Orange Colour Bar Indicate the PI for Individual Left and Right Iris Feature Vector Fusion. Red Colour Bar Indicates PI for Fusion (TRF: Transform, FV: Feature Vector)

4.3.5.2 Iris Recognition using Partitioned DCT Plane in Transform Domain

The discrete cosine transform (DCT) represents an image as a sum of sinusoids of varying magnitudes and frequencies. The intermediate transforms are generated as discussed for Walsh & Hartley transform to generate the complex plane in transform domain using Even and Odd functions of the intermediate transform. The even and odd functions are used to plot (Even + jOdd) points in complex DCT plane and then the feature vector variants are extracted for left & right normalized iris ROI’s. Fig. 4.38 shows one of such complex plot for DCT. Fig. 4.39 shows the performance comparison.
Fig. 4.38. Partitioned Complex DCT Plane of Normalized Iris
(a) Row Transform Function Plot (b) Column Transform Complex Function Plot

Fig. 4.39. Performance Comparison for Feature Vector Variants of Partitioned DCT Odd Even Functions Iris Recognition

Score Fusion based Matching Gives Higher Performance this is Indicated by Bar in Red Colour. The Orange Colour Bar Indicate the PI for Individual Left and Right Iris Feature Vector Fusion (TRF: Transform, FV: Feature Vector)

The fusion of feature vectors gives 79 & 80% PI for Left & Right iris. The final fusion gives improvement in PI, the fusion based feature vector gives 83% PI. The CCR’s achieved are 78.27, 78.95 & 81.52% for Left iris, Right iris & Fusion based feature vectors.
4.3.5.3 Iris Recognition using Partitioned Kekre’s Transform Plane in Transform Domain

![Partitioned Complex Kekre’s Transform Plane](image)

Fig. 4.40. Partitioned Complex Kekre’s Transform Plane of Normalized Iris (a) Row Transform Function Plot (b) Column Transform Complex Function Plot

<table>
<thead>
<tr>
<th></th>
<th>% PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row TRF -L</td>
<td>68</td>
</tr>
<tr>
<td>Col TRF -L</td>
<td>73</td>
</tr>
<tr>
<td>Row-Density -L</td>
<td>83</td>
</tr>
<tr>
<td>Col-Density -L</td>
<td>83</td>
</tr>
<tr>
<td>Row TRF -R</td>
<td>65</td>
</tr>
<tr>
<td>Col TRF -R</td>
<td>69</td>
</tr>
<tr>
<td>Row-Density -R</td>
<td>78</td>
</tr>
<tr>
<td>Col-Density -R</td>
<td>79</td>
</tr>
<tr>
<td>Row TRF + Density + DC SEQ Left</td>
<td>78</td>
</tr>
<tr>
<td>Row TRF + Density + DC SEQ Right</td>
<td>79</td>
</tr>
<tr>
<td>Fusion</td>
<td>75</td>
</tr>
</tbody>
</table>

Fig. 4.41. Performance Comparison for Feature Vector Variants of Partitioned Kekre’s Transform Odd Even Functions Iris Recognition. The Orange Colour Bar Indicate the PI for Individual Left and Right Iris Feature Vector Fusion (TRF: Transform, FV: Feature Vector)

Kekre’s transform based testing is also performed using Even Odd function plot in complex plane. Fig.4.40 shows complex plane
for Even Odd Function plot of Kekre’s Transform. The feature vectors for Left & Right iris give PI in the range of 65 to 83%. Row & Column density based feature vectors have higher PI, this is shown in Fig. 4.41. The fusion of the feature vectors for left & right iris give PI higher than their individual average, we have achieved 78% and 79% PI for left & right iris fusion. However the final fusion of left & right iris gives lesser PI of 75%. The CCR’s for left iris, right iris & Left + Right iris fusion are 77.2, 78.01 & 74% respectively.

4.3.5.4 Iris Recognition using Partitioned Kekre’s Wavelet Plane in Transform Domain

Finally the Kekre’s wavelets and there use for generating complex plane plot using Even Odd function of intermediate wavelet transform is discussed here. The intermediate row and column transform of normalized iris is taken and then the (Even + j Odd) function points are plotted in complex plane. One such plot is shown in Fig. 4.42.

![Fig. 4.42. Partitioned Complex Kekre’s Wavelet Plane of Normalized Iris](image)
(a) Row Transform Function Plot (b) Column Transform Complex Function Plot

The performance comparison of the different feature vectors is given in Fig.4.43. For left & right iris the Performance Index is in the range of 71 to 79%. When the fusion is performed for the left & right iris the fused feature vector give PI of 80 & 79%. The final fusion of left & right iris gives PI of 81%. The PI of left & right iris fusion is higher as the individual PIs have narrow range of 71-79% as compared to previous variants. The CCR’s for Left, Right & Left + Right iris fusion based feature vectors are 80, 77.98 & 80.53%.
Fig. 4.43. Performance Comparison for Feature Vector Variants of Partitioned Kekre’s Wavelet Odd Even Functions Iris Recognition Score Fusion based Matching Gives Higher Performance this is Indicated by Bar in Red Colour. The Orange Colour Bar Indicate the PI for Individual Left and Right Iris Feature Vector Fusion (TRF: Transform, FV: Feature Vector)

Fig. 4.44. Performance Comparison for Feature Vector Variants of Partitioned Complex Plane based Feature Vectors
In this section iris recognition using Iris recognition using Partitioned Complex Walsh Plane in transform domain is discussed. This method is extended for Even Odd functions complex plane plot of Hartley Transform, DCT, Kekre’s transform & Kekre’s wavelets. These methods were tested on normalized iris data and the feature vectors are extracted for left & right iris images of the user iris database. Individual left & right iris as well as fusion of both the iris is tested. The summary is given in Fig.4.4.

Walsh transform based feature vectors give best performance. The fusion of feature vectors of left & right iris give 84% CCR for Walsh transform. Next best performance is given by Kekre’s wavelets, 80.53% of CCR is achieved for fusion of iris feature vectors. In case of Walsh, DCT & Kekre’s Wavelet based testing the fusion of left & right iris gave higher CCR as compared to individual testing, but for Hartley & Kekre’s transform the fusion didn’t yielded higher CCR, in fact the final CCR is lower in these two cases. This is mainly because the individual feature vectors performance was low and having higher variations as compared to other transforms.

4.4 Summary

In this chapter two important biometrics, namely Face & Iris are discussed in detail. Face requires lower degree of user cooperation while that for iris is high, still face & iris are widely used in implementation of unimodal & multimodal biometrics systems. We have implemented face recognition using Gabor Filter based feature vector, Kekre & Haar Wavelets, VQ method such as LBG, KFCG, KMCG clustering algorithms. Gabor filter based system is suitable for low population and has been tested successfully on handheld devices. Kekre wavelet & VQ based system provide best accuracy and feasible for real time face recognition. Amongst VQ techniques KFCG has best performance.

In case of iris recognition systems based on KMCG, KFCG based Vector Quantization, DCT & WHT, Kekre & Haar Wavelets, Walsh Cal Sal functions and Even Odd Functions of other transforms are tested. The systems have advantage that they don’t need preprocessing of input image and still provide accuracy up to 90%. Iris normalization and its effect on iris recognition is studied and it is observed that it gives up to 36% improvement in PI. We have tested LBG, KFCG & KMCG based VQ techniques for generating feature vectors. KFCG gives best accuracy. Transform such as DCT & Walsh (WHT) are applied on plain image as well as its Row &
Column Mean (RM & CM). In another variation Partitioned complex plane of Walsh and other transforms is used for feature vector extraction, multi algorithmic as well as multi instance iris recognition systems using these methods are discussed in this section. Fusion of left & right iris feature vectors gives further performance improvement. In the next chapter we discuss handwritten signature recognition and keystrokes dynamics as biometrics.