<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Various Coating Deposition Processes in commercial Use</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Comparison between different thermal spraying processes [Tokarev, 1996]</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Schematic of Cold Spray Process [Karthikeyan, 2004]</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Operating principle of High Pressure Cold Spray</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Operating principle of Low Pressure Cold Spray</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Ishikawa Cause and Effect (Fish Bone) diagram</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>(a) SEM microstructure of the powder</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>(b) EDAX image for the powder at selected point</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(c) EDAX analysis for the powder at selected point in (b)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(d) XRD analysis of the coating powder</td>
<td>56</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Photographic views of low pressure portable Cold Spray Machine</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(SST LPCS Model # SSM-P3800-001)</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>Principle Scheme of low pressure portable Cold Spray Machine</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(SST, Centreline, Windsor, Canada)</td>
<td></td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>The Taguchi Loss-Function and the Traditional Quality Philosophy Approach [Ross (1996)]</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>a) Taguchi Loss function</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>b) Traditional</td>
<td>74</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>Taguchi Experimental design and analysis flow diagram [Kumar, (1994)]</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 5.3</td>
<td>Methodology for multi-response optimization by Utility concept and Taguchi method</td>
<td>88</td>
</tr>
<tr>
<td>Fig. 6.1</td>
<td>Variation of coating thickness (raw data and S/N ratio) with process parameters</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>a) Feed arrangement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Substrate material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Air pressure (psi)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Air temperature (°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) Stand-off distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f) Effect of Interaction (A and B) on (CT and S/N Ratio)</td>
<td>93</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>SEM micrograph of cross-section of the coatings deposited</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(a) Gravity Feeder (GF), Al alloy, 104 psi, 350 °C, 2.5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Argon powder Feeder (AF), Al alloy, 112 psi, 350 °C, 2.5 mm</td>
<td></td>
</tr>
<tr>
<td>Fig. 6.3</td>
<td>SEM micrograph of cross-section of the coatings deposited</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(a) GF, Brass, 120 psi, 400 °C, 2.5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) AF, Brass, 104 psi, 375 °C, 7.5 mm</td>
<td></td>
</tr>
<tr>
<td>Fig. 6.4</td>
<td>SEM micrograph of cross-section of the coatings deposited</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(a) GF, Ni alloy, 120 psi, 400 °C, 5.0 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) AF, Ni alloy, 120 psi, 375 °C, 2.5 mm</td>
<td></td>
</tr>
<tr>
<td>Fig. 6.5</td>
<td>Effect of parameters on coating density (raw data)</td>
<td>100</td>
</tr>
<tr>
<td>Fig. 6.6</td>
<td>Effect of parameters on S/N ratio (main effects)</td>
<td>101</td>
</tr>
</tbody>
</table>
Fig. 6.7 Interaction between feed type and substrate material on (Coating density and S/N ratio) 101
Fig. 6.8 shows cross-section morphology of as-sprayed specimens using gravity powder feeding arrangement 104
Fig. 6.9 shows cross-section morphology of as-sprayed specimens using argon powder feeding arrangement 105
Fig. 6.10 Variation of Surface roughness (raw data and S/N ratio) with process parameters 109-

a) Feed arrangement 109
b) Substrate material 109
c) Air pressure (psi) 110
d) Air temperature (°C) 110
e) Stand-off distance (mm) 111
Fig. 6.11 Interaction between feed type and substrate material on (Surface roughness and S/N ratio) 113
Fig. 6.12 SEM microstructure of the coated specimens ((a)- (r) represents Trial Runs 1-18 as per design table 6.1) 114-

(a)- (f) S/N ratio (main effects) 123
Fig. 6.13 Effect of process parameters on Utility value (UCT, CD, and SR) and 121-

Fig. 7.1 2-D view of Nozzle for the present work 133
Fig. 7.2 Nozzle after the meshing and boundary Conditions (domain and finite element mesh) 134
Fig. 7.3 Velocity distribution through the nozzle (contours of velocity) N1 141
Fig. 7.4 Pressure distribution through the nozzle N1 142
Fig. 7.5 Temperature distribution through the nozzle N1 143
Fig. 7.6 Velocity distribution through nozzle N2 144
Fig. 7.7 Pressure distribution through the nozzle N2 145
Fig. 7.8 Temperature distribution through nozzle N2 146
Fig. 7.9 Velocity distribution through the nozzle (contours of velocity) N3 149
Fig. 7.10 Pressure distribution through the nozzle N3 150
Fig. 7.11 Temperature distribution through the nozzle N3 151
Fig. 7.12 Velocity distribution through the nozzle (contours of velocity) N4 152
Fig. 7.13 Pressure distribution through the nozzle N4 153
Fig. 7.14 Temperature distribution through nozzle N4 154
Fig. 7.15 Velocity distribution through the nozzle (contours of velocity) N5 157
Fig. 7.16 Pressure distribution through the nozzle N5 158
Fig. 7.17 Temperature distribution through nozzle N5 159
Fig. 7.18 Velocity distribution through the nozzle (contours of velocity) N6 160
Fig. 7.19 Pressure distribution through the nozzle (contours of velocity) N6 161
Fig. 7.20 Temperature distribution through the nozzle (contours of velocity) N6 162
Fig. 8.1 Micro hardness plot along the cross-section for copper coating on ASTM B 221 (Al) alloy 167
Fig. 8.2 Micro hardness plot along the cross-section for copper coating on ASTM B 36 (Brass) alloy 167
Fig. 8.3 Micro hardness plot along the cross-section for copper coating on ASTM B 435 (Ni) alloy 167
Fig. 8.4 Surface macrographs of coated specimen on Al alloy substrate (a to f represent Trial Runs (Table 8.1)) 171
Fig. 8.5 Surface macrographs of coated specimen on Brass substrate (a to f represent Trial Runs (Table 8.2)) 171
Fig. 8.6 Surface macrographs of coated specimen on Ni alloy substrate (a to f represent Trial Runs (Table 8.3)) 171
Fig. 8.7 Cross-section micrographs of as-sprayed coatings on Al alloy substrate (a: Trial Run 1, b: Trial Run 11; Table 8.1) 172
Fig. 8.8 Cross-section micrographs of as-sprayed coatings on Brass substrate (a: Trial Run 6, b: Trial Run 13; Table 8.2) 172
Fig. 8.9 Cross-section micrographs of as-sprayed coatings on Ni alloy substrate (a: Trial Run 8, b: Trial Run 18; Table 8.3) 172
Fig. 8.10 XRD plot of as-sprayed copper coatings on Al alloy (a: Trial Run 3, b: Trial Run 12; Table 8.1) 173
Fig. 8.11 XRD plot of as-sprayed copper coatings on Brass substrate (a: Trial Run 4, b: Trial Run 15 (Table 8.2)) 174
Fig. 8.12 XRD plot of as-sprayed copper coatings on Ni alloy (Trial Run 17 (Table 8.3)) 175
Fig. 8.13 SEM microstructure of copper coatings on ASTM B221 (Al alloy) (a) to (c) Gravity fed powder coatings (d) to (f) Argon fed powder coatings 176
Fig. 8.14 EDAX analysis of the surface of as-sprayed coatings on Al alloy (KV 20.0 MAG 3000 TILT 0.0 MICRONSPERPIXY 0.083) (a) to (f) represents elemental analysis of coatings for different trial runs (Table 8.1) 177
Fig. 8.15 SEM microstructure of copper coatings on ASTM B36 (Brass) (a) to (c) Gravity fed powder coatings (d) to (f) Argon fed powder coatings 178
Fig. 8.16 EDAX analysis of the surface of as-sprayed coatings on Brass (KV 20.0 MAG 3000 TILT 0.0 MICRONSPERPIXY 0.083) (a) to (f) represents elemental analysis of coatings for different trial runs (Table 8.2) 179
Fig. 8.17 SEM microstructure of copper coatings on ASTM B435 (Ni alloy) (a) to (c) Gravity fed powder coatings (d) to (f) Argon fed powder coatings 180
Fig. 8.18 EDAX analysis of the surface of as-sprayed coatings on Ni alloy (KV 20.0 MAG 3000 TILT 0.0 MICRONSPERPIXY 0.083) (a) to (f) represents elemental analysis of coatings for different trial runs (Table 8.3) 181
Fig. 8.19 EPMA analysis plot of the coated specimen on Al substrate 182
Fig. 8.20 EPMA analysis plot of the coated specimen on Brass substrate 182
Fig. 8.21 EPMA analysis plot of the coated specimen on Ni substrate 182
Fig. 8.22 Macrographs of cold spray coatings ((a) to (f) represents coatings for trial run; Table 8.1, (g) uncoated Al alloy specimen) 185
Fig. 8.23 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Al alloy subjected to corrosion for 30 days in marine environment 186
Fig. 8.24 (Weight change/area)² vs. Number of days after exposure plot for the uncoated and cold spray coated Al alloy subjected to corrosion for 30 days in marine environment 186
Fig. 8.25 XRD plots of uncoated and copper coated Al alloy specimens after exposure to marine environment 189-190
Fig. 8.26 SEM surface micrographs after corrosion test (a: Trial Run C, b: Trial Run F; Table 8.4) 191
Fig. 8.27 SEM cross-sectional micrographs of copper coated Al alloy specimens after corrosion test in simulated marine environment (a to f represents Trial runs A to F; Table 8.4) 192
Fig. 8.28 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Al alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 3; Table 8.1) 193
Fig. 8.29 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Al alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 12; Table 8.1) 194
Fig. 8.30 Macrographs of cold spray coatings ((a) to (f) represents coatings for trial runs; Table 8.1, (g) uncoated Al alloy specimen) 197
Fig. 8.31 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Al alloy subjected to corrosion for 30 days in industrial environment 198
Fig. 8.32 (Weight change/area)² vs. Number of days after exposure plot for the uncoated and cold spray coated Al alloy subjected to corrosion for 30 days in industrial environment 198
Fig. 8.33 XRD plots of uncoated and copper coated Al alloy specimens after exposure to industrial environment 201-202
Fig. 8.34 SEM surface micrographs after corrosion test (a: Trial Run B, b: Trial Run D; Table 8.7) 203
Fig. 8.35 SEM cross-sectional micrographs of copper coated Al alloy specimens after corrosion test in simulated industrial environment (a to f represents Trial run A to F; Table 8.7) 204
Fig. 8.36 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Al alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 2; Table 8.1) 205
Fig. 8.37 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Al alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 11; Table 8.1) 206
Fig. 8.38 Macrographs of cold spray coatings after exposure in marine environment (a to f represents coatings for trial runs; Table 8.2, g uncoated Brass substrate) 209
Fig. 8.39 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Brass alloy subjected to corrosion for 30 days in marine environment 210
Fig. 8.40 (Weight change/area)² vs. Number of days after exposure plot for the uncoated and cold spray coated Brass alloy subjected to corrosion for 30 days in marine environment 210
Fig. 8.41 XRD plots of uncoated and coated Brass specimens after exposure to marine environment 213-214
Fig. 8.42 SEM surface micrographs after corrosion test (a: Trial Run B, b: Trial Run F; Table 8.10)
Fig. 8.43 SEM cross-sectional micrographs of copper coated Brass specimens after corrosion test in marine environment for 30 days (a to f represents Trial runs A to F; Table 8.10)
Fig. 8.44 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Brass alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 4; Table 8.2)
Fig. 8.45 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Brass alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 15; Table 8.2)
Fig. 8.46 Macrographs of cold spray coatings after exposure in industrial environment (a to f represents coatings for trial runs; Table 8.3, g uncoated Brass substrate)
Fig. 8.47 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Brass alloy subjected to corrosion for 30 days in industrial environment
Fig. 8.48 (Weight change/area)2 vs. Number of days after exposure plot for the uncoated and cold spray coated Brass alloy subjected to corrosion for 30 days in industrial environment
Fig. 8.49 XRD plots of uncoated and coated Brass specimens after exposure to industrial environment
Fig. 8.50 SEM surface micrographs after corrosion test (a: Trial Run A, b: Trial Run E; Table 8.13)
Fig. 8.51 SEM cross-sectional micrographs of copper coated Brass specimens after corrosion test in industrial environment for 30 days (a to f represents Trial runs A to F; Table 8.13)
Fig. 8.52 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Brass alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 5; Table 8.2)
Fig. 8.53 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Brass alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 15; Table 8.2)
Fig. 8.54 Macrographs of cold spray coatings after exposure in marine environment (a to f represents coatings for trial runs; Table 8.3, g uncoated Ni substrate)
Fig. 8.55 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Ni alloy subjected to corrosion for 30 days in marine environment
Fig. 8.56 (Weight change/area)2 vs. Number of days after exposure plot for the uncoated and cold spray coated Ni alloy subjected to corrosion for 30 days in marine environment
Fig. 8.57 XRD plots of uncoated and coated Ni alloy specimens after exposure to marine environment
Fig. 8.58 SEM surface micrographs after corrosion test (a: Trial Run C, b: Trial Run D; Table 8.16)
Fig. 8.59 SEM cross-sectional micrographs of copper coated Ni alloy specimens after corrosion test in marine environment for 30 days (a to f represents Trial runs A to F; Table 8.16)
Fig. 8.60 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Ni alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 8; Table 8.3)
Fig. 8.61 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Ni alloy subjected to corrosion in simulated marine environment for 30 days (Trial Run 18; Table 8.3)
Fig. 8.62 Macrographs of cold spray coatings after exposure in industrial environment (a to f represents coatings for trial runs; Table 8.3, g uncoated Ni substrate)
Fig. 8.63 Weight change/area vs. Number of days after exposure plot for the uncoated and cold spray coated Ni alloy subjected to corrosion for 30 days in industrial environment
Fig. 8.64 (Weight change/area)2 vs. Number of days after exposure plot for the uncoated and cold spray coated Ni alloy subjected to corrosion for 30 days in industrial environment
Fig. 8.65 XRD plots of uncoated and coated Ni alloy specimens after exposure to industrial environment
Fig. 8.66 SEM surface micrographs after corrosion test (a: Trial Run B, b: Trial Run F; Table 8.19)
Fig. 8.67 SEM cross-sectional micrographs of copper coated Ni alloy specimens after corrosion test in industrial environment for 30 days (a to f represents Trial runs A to F; Table 8.19)
Fig. 8.68 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Ni alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 7; Table 8.3)
Fig. 8.69 Composition image (BSEI) and X-ray mappings of the cross-section of copper coated Ni alloy subjected to corrosion in simulated industrial environment for 30 days (Trial Run 18; Table 8.3)
Fig. A.1 Digital Micrometer (Mitutoyo, Japan, precision 0.0001 inch)
Fig. A.2 Axiocert 200 MAT Inverted Optical Microscope (Carl Zeiss Ltd, Germany)
Fig. A.3 Metco’s Micro-hardness Tester
Fig. A.4 PANalytical’s X’Pert PRO Materials Research Diffractometer
Fig. A.5 Scanning Electron Microscope (a: FEI, Quanta 200F; b: JEOL JSM-6610 LV)
Fig. A.6 JXA-8600M microprobe analyser
Fig. A.7 Four Probe set up (DFP 03; SES Instruments Pvt. Ltd.)
Fig. A.8 Surface Roughness Tester, Mitutoyo (Model SJ 400)
Fig. A.9 Specimens under test in simulated marine environment
Fig. A.10 Digital Vernier Caliper (Mitutoyo make)
Fig. A.11 Electronic Balance Model CAY-220
Fig. A.12 Specimens under test in simulated industrial environment
Fig. C.1 XRD plot for uncoated Al alloy after corrosion testing in simulated marine environment
Fig. C.2 XRD plot for uncoated Al alloy after corrosion testing in simulated industrial environment
Fig. C.3 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 1)
Fig. C.4 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 1)
Fig. C.5 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 2)
Fig. C.6 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 2)
Fig. C.7 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 3)
Fig. C.8 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 3)
Fig. C.9 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 10)
Fig. C.10 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 10)
Fig. C.11 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 11)
Fig. C.12 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 11)
Fig. C.13 XRD plot for coated Al alloy after corrosion testing in simulated marine environment (Trial Run 12)
Fig. C.14 XRD plot for coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 12)
Fig. C.15 XRD plot for uncoated Brass alloy after corrosion testing in simulated marine environment
Fig. C.16 XRD plot for uncoated Brass alloy after corrosion testing in simulated industrial environment
Fig. C.17 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 4)
Fig. C.18 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 4)
Fig. C.19 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 5)
Fig. C.20 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 5)
Fig. C.21 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 6)
Fig. C.22 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 6)
Fig. C.23 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 13)
Fig. C.24 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 13)
Fig. C.25 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 14)
Fig. C.26 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 14)
Fig. C.27 XRD plot for coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 15)
Fig. C.28 XRD plot for coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 15)
Fig. C.29 XRD plot for uncoated Ni alloy after corrosion testing in simulated marine environment
Fig. C.30 XRD plot for uncoated Ni alloy after corrosion testing in simulated industrial environment
Fig. C.31 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 7)
Fig. C.32 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 7)
Fig. C.33 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 8)
Fig. C.34 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 8)
Fig. C.35 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 9)
Fig. C.36 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 9)
Fig. C.37 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 16)
Fig. C.38 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 16)
Fig. C.39 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 17)
Fig. C.40 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 17)
Fig. C.41 XRD plot for coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 18)
Fig. C.42 XRD plot for coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 18)
Fig. D.1 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated marine environment (Trial Run 1)
Fig. D.2 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 1)
Fig. D.3 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated marine environment (Trial Run 2)
Fig. D.4 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 2)
Fig. D.5 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated marine environment (Trial Run 3)
Fig. D.6 Composition image (BSEI) and X-ray mappings of copper coated
Al alloy after corrosion testing in simulated industrial environment
(Trial Run 3)

Fig. D.7 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated marine
environment (Trial Run 4)

Fig. D.8 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated industrial
environment (Trial Run 4)

Fig. D.9 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated marine
environment (Trial Run 5)

Fig. D.10 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated industrial
environment (Trial Run 5)

Fig. D.11 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated marine
environment (Trial Run 6)

Fig. D.12 Composition image (BSEI) and X-ray mappings of copper coated
Brass alloy after corrosion testing in simulated industrial
environment (Trial Run 6)

Fig. D.13 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated marine environment
(Trial Run 7)

Fig. D.14 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated industrial environment
(Trial Run 7)

Fig. D.15 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated marine environment
(Trial Run 8)

Fig. D.16 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated industrial environment
(Trial Run 8)

Fig. D.17 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated marine environment
(Trial Run 9)

Fig. D.18 Composition image (BSEI) and X-ray mappings of copper coated
Ni alloy after corrosion testing in simulated industrial environment
(Trial Run 9)

Fig. D.19 Composition image (BSEI) and X-ray mappings of copper coated
Al alloy after corrosion testing in simulated marine environment
(Trial Run 10)

Fig. D.20 Composition image (BSEI) and X-ray mappings of copper coated
Al alloy after corrosion testing in simulated industrial environment
(Trial Run 10)

Fig. D.21 Composition image (BSEI) and X-ray mappings of copper coated
Al alloy after corrosion testing in simulated marine environment
(Trial Run 11)
Fig. D.22 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 11)

Fig. D.23 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated marine environment (Trial Run 12)

Fig. D.24 Composition image (BSEI) and X-ray mappings of copper coated Al alloy after corrosion testing in simulated industrial environment (Trial Run 12)

Fig. D.25 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 13)

Fig. D.26 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 13)

Fig. D.27 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 14)

Fig. D.28 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 14)

Fig. D.29 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated marine environment (Trial Run 15)

Fig. D.30 Composition image (BSEI) and X-ray mappings of copper coated Brass alloy after corrosion testing in simulated industrial environment (Trial Run 15)

Fig. D.31 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 16)

Fig. D.32 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 16)

Fig. D.33 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 17)

Fig. D.34 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 17)

Fig. D.35 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated marine environment (Trial Run 18)

Fig. D.36 Composition image (BSEI) and X-ray mappings of copper coated Ni alloy after corrosion testing in simulated industrial environment (Trial Run 18)