LIST OF FIGURES

Fig.2.1 Circular microstrip antenna 12
Fig.2.2 Typical radiation pattern in the E and H-Plane of the circular patch antenna 15
Fig.2.3 Rectangular microstrip antenna 12
Fig.2.4 Geometry for Far-field pattern of rectangular microstrip antenna 19
Fig.2.5 Annular ring microstrip antenna 21
Fig.2.6(a) Electric field distribution on annular-ring microstrip antenna(TM11-mode) 23
Fig.2.6(b) Electric field distribution on circular antenna (TM11-mode) 23
Fig.3.1 (a) Lowest order resonance frequency $f_{(o)}$ of a rectangular shorting post microstrip patch antenna as a function of relative shorting-post co-ordinates $(x_o/a, y_o/b)$. Dimensions: $a=18.2$mm, $b=19.6$mm, $t=2$mm, $\varepsilon=17$, $D/\sqrt{\pi}=0.1$mm (shorting post extension). (b) Lowest order resonance frequency $f_{(o)}$ of a rectangular shorting post MPA as a function of relative shorting post coordinate x_o/a with fixed $y_o/b=0.01$ and for different shorting post extensions $D/\sqrt{\pi}$ as indicated in the figure. All other parameters as in Fig.1(a). 37
Fig.3.2 (a) Lowest order resonance frequency $f_{(o)}$ of a rectangular shorting post microstrip patch antenna as a function of relative patch surface area A/a^2 a is kept equal to 18.2mm, $b=A/a$; different curves pertain to different shorting post extensions $D/\sqrt{\pi}$ as indicated in the figure. The shorting post is positioned at a corner of the patch $(x_o,y_o)=0.01x(a,b)$. All other parameters as in Fig.3.1(a). (b) Lowest order resonance frequency $f_{(o)}$ of a rectangular shorting post microstrip patch antenna of fixed patch surface area $A=(18.2)$mm2 as a function of the symmetry b/a. The shorting post is positioned at a corner of the $(x_o,y_o)=0.01x(a,b)$; $D/\sqrt{\pi}=0.1$mm. All other parameters as in Fig.1(a). For reference, the corresponding values for an unloaded patch are also given. 38
Fig.3.3 Distribution of electric field in a generic rectangular shorting post MPA as gained from a MAFIA-package simulation. The dot size corresponds to the field strength. 39
Fig.3.4 Lowest order resonance frequency $f_{(o)}$ of a circular shorting post microstrip patch antenna as a function of relative shorting-post position r_o/a for different shorting-post diameters Δ as indicated in the figure. Dimensions: $a=10.7$, $t=2$mm, $\varepsilon=17$. 39
Fig.4.1 Electromagnetically coupled patch (EMCP) antenna (Two-layer config) 45
Fig.4.2 Microstrip antenna fed by proximity coupled microstrip line 45
Fig.4.3 Aperture coupled microstrip antenna 45
Fig.5.1 Configuration of stacked annular ring coupled shorted circular microstrip antenna (Normal configuration) 48
Fig.5.2 Configuration of stacked annular ring coupled shorted circular microstrip antenna (Inverted configuration) 49
Fig.5.3 (A) Antenna impedance measurement setup 50
Fig.5.3 (B) Co-ordinate system for radiation patterns measurement 55
Fig.5.3 (a) Computed and measured input impedance (Normal configuration) 67
Fig.5.3 (b) Computed and measured return-loss (Normal configuration)
Parameters: $\varepsilon_r=2.55$, $\varepsilon_r=2.2$, $d_1=4.7$mm, $d_2=1.6$mm, $a_1=8.2$mm, $a_2=9.6$mm, $a_3=25.8$mm, $S=1.0$mm, $x_r=3.5$mm, $x_s=5.3$mm, $y_r=0.0$mm, $y_s=0.0$mm, $r_1=0.4$mm, $r_2=0.4$mm 67
Fig. 5.3(a) Computed radiation patterns (f₁=1.85 GHz, f₂=2.0 GHz)

Fig. 5.3(b) Computed radiation patterns (f₁=1.85 GHz, f₂=2.0 GHz)

Fig. 5.4(a) Computed and measured input impedance (Inverted configuration)

Fig. 5.4(b) Computed and measured return-loss (Inverted configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=1.6 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=1.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.4(c) Computed radiation patterns (f₁=1.96 GHz, f₂=2.072 GHz)

Fig. 5.5(a) Computed and measured input impedance (Normal configuration)

Fig. 5.5(b) Computed and measured return-loss (Normal configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=1.6 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.5(c) Computed radiation patterns (f₁=1.828 GHz, f₂=1.988 GHz)

Fig. 5.6(a) Computed and measured input impedance (Inverted configuration)

Fig. 5.6(b) Computed and measured return-loss (Inverted configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.6(c) Computed radiation patterns (f₁=1.75 GHz, f₂=2.0 GHz)

Fig. 5.7(a) Computed and measured input impedance (Normal configuration)

Fig. 5.7(b) Computed and measured return-loss (Normal configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.7(c) Computed radiation patterns (f₁=1.94 GHz, f₂=2.04 GHz)

Fig. 5.8(a) Computed and measured input impedance (Inverted configuration)

Fig. 5.8(b) Computed and measured return-loss (Inverted configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.8(c) Computed radiation patterns (f₁=1.95 GHz, f₂=2.04 GHz)

Fig. 5.9(a) Computed and measured input impedance (Normal configuration)

Fig. 5.9(b) Computed and measured return-loss (Normal configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)

Fig. 5.9(c) Computed radiation patterns (f₁=1.848 GHz, f₂=1.988 GHz)

Fig. 5.10(a) Computed and measured input impedance (Inverted configuration)

Fig. 5.10(b) Computed and measured return-loss (Inverted configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_t=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, a_1=8.2 \text{mm}, a_2=9.6 \text{mm}, a_3=25.8 \text{mm}, S=0.0 \text{mm}, x_t=3.5 \text{mm}, x_s=5.3 \text{mm}, y_t=0.0 \text{mm}, y_s=0.0 \text{mm}, r_t=0.4 \text{mm}, r_s=0.4 \text{mm} \)
Fig. 5.10 (c) Computed radiation patterns \(f_1=1.758 \text{ GHz, } f_2=1.77 \text{ GHz, } f_2=2.04 \text{ GHz}\)

Fig. 5.11 (a) Configuration of stacked annular ring coupled edge fed shorted circular microstrip antenna (Normal configuration)
Parameters: \(\varepsilon_r=2.55, \varepsilon_r=2.2, d_1=4.7 \text{ mm, } d_2=0.8 \text{ mm, } a_1=8.2 \text{ mm, } a_2=9.6 \text{ mm, } a_3=25.8 \text{ mm, } S=2.0 \text{ mm, } x_3=5.3 \text{ mm, } y_3=0.0 \text{ mm, } L=4.4 \text{ mm, } W=2.0 \text{ mm, } r_f=0.4 \text{ mm, } r_s=0.4 \text{ mm}\)

Fig. 5.11 (b) Measured input impedance (Normal configuration)

Fig. 5.11 (c) Measured return-loss (Normal configuration)

Fig. 5.12 Variation of directivity with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.13 Variation of directivity with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.14 Variation of return loss with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.15 Variation of return-loss with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.16 Variation of radiation efficiency with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.17 Variation of radiation efficiency with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.18 Variation of resonant frequency with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.19 Variation of resonant frequency with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.20 Variation of bandwidth with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)

Fig. 5.21 Variation of bandwidth with respect to air-gap \(S\)
Series 1: \(r_f=r_s=0.2 \text{ mm, Series 2: } r_f=r_s=0.3 \text{ mm, Series 3: } r_f=r_s=0.4 \text{ mm, Series 4: } r_f=r_s=0.5 \text{ mm}\)
Fig. 5.22 Variation of cross-polarisation with respect to air-gap (S)
\(r_1 = r_2 = 0.5 \text{ mm} \)

Series 1: \(r_1 = r_2 = 0.2 \text{ mm} \), Series 2: \(r_1 = r_2 = 0.3 \text{ mm} \), Series 3: \(r_1 = r_2 = 0.4 \text{ mm} \)
Series 4: \(r_1 = r_2 = 0.5 \text{ mm} \)

Fig. 5.23 Variation of cross-polarisation with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 1.6 \text{ mm} \)
Series 1: \(r_1 = r_2 = 0.2 \text{ mm} \), Series 2: \(r_1 = r_2 = 0.3 \text{ mm} \), Series 3: \(r_1 = r_2 = 0.4 \text{ mm} \)
Series 4: \(r_1 = r_2 = 0.5 \text{ mm} \)

Fig. 5.24 Variation of directivity with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 0.8 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \), Series 4: \(r_1 = 0.3 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 5: \(r_1 = 0.5 \text{ mm}, r_2 = 0.1 \text{ mm} \)

Fig. 5.25 Variation of directivity with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 1.6 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \)
Series 4: \(r_1 = 0.3 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 5: \(r_1 = 0.5 \text{ mm}, r_2 = 0.1 \text{ mm} \)

Fig. 5.26 Variation of return loss with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 0.8 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \), Series 4: \(r_1 = 0.3 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 5: \(r_1 = 0.5 \text{ mm}, r_2 = 0.1 \text{ mm} \)

Fig. 5.27 Variation of return loss with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 1.6 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \)

Fig. 5.28 Variation of radiation efficiency with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 0.8 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \), Series 4: \(r_1 = 0.3 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 5: \(r_1 = 0.5 \text{ mm}, r_2 = 0.1 \text{ mm} \)

Fig. 5.29 Variation of radiation efficiency with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 1.6 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \)

Fig. 5.30 Variation of resonant frequency with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 0.8 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \), Series 4: \(r_1 = 0.3 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 5: \(r_1 = 0.5 \text{ mm}, r_2 = 0.1 \text{ mm} \)

Fig. 5.31 Variation of resonant frequency with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 1.6 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \)

Fig. 5.32 Variation of bandwidth with respect to air-gap (S)
\(r_1 = 2.55, r_2 = 2.2, d_1 = 4.7 \text{ mm}, d_2 = 0.8 \text{ mm} \)
Series 1: \(r_1 = 0.5 \text{ mm}, r_2 = 0.4 \text{ mm} \), Series 2: \(r_1 = 0.4 \text{ mm}, r_2 = 0.5 \text{ mm} \)
Series 3: \(r_1 = 0.5 \text{ mm}, r_2 = 0.3 \text{ mm} \)
Fig. 5.33 Variation of bandwidth with respect to air-gap (S)
\[\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 1.6mm \]
Series 1: \(r_1 = 0.5mm, r_2 = 0.4mm \), Series 2: \(r_1 = 0.4mm, r_2 = 0.5mm \)
Series 3: \(r_1 = 0.5mm, r_2 = 0.3mm \)

Fig. 5.34 Variation of cross-polarisation with respect to air-gap (S)
\[\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 1.6mm \]
Series 1: \(r_1 = 0.5mm, r_2 = 0.4mm \), Series 2: \(r_1 = 0.4mm, r_2 = 0.5mm \)
Series 3: \(r_1 = 0.5mm, r_2 = 0.3mm \)
Series 4: \(r_1 = 0.4mm, r_2 = 0.3mm \)
Series 5: \(r_1 = 0.5mm, r_2 = 0.1mm \)

Fig. 5.35 Variation of cross-polarisation with respect to air-gap (S)
\[\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 0.8mm \]
Series 1: \(r_1 = 0.5mm, r_2 = 0.4mm \), Series 2: \(r_1 = 0.4mm, r_2 = 0.5mm \)
Series 3: \(r_1 = 0.5mm, r_2 = 0.3mm \)

Fig. 6.1 Configuration of stacked square ring coupled shorted square microstrip antenna (Normal configuration)

Fig. 6.2 Configuration of stacked square ring coupled shorted square microstrip antenna (Inverted configuration)

Fig. 6.3 (a) Computed and measured input impedance (Normal configuration)
Fig. 6.3 (b) Computed and measured return-loss (Normal configuration)
Parameters: \(\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 1.6mm, L = 46mm, L_1 = 14mm, L_2 = 14mm, W = 46mm, W_1 = 14mm, W_2 = 14mm, S = 2.5mm, x_r = 3.4mm, x_s = 5.3mm, y_r = 0.0mm, y_s = 0.0mm, r_1 = 0.4mm, r_2 = 0.4mm \)

Fig. 6.3 (c) Computed radiation patterns (\(f_1 = 1.90GHz, f_c = 1.98GHz, f_2 = 2.09GHz \))

Fig. 6.3 (d) Measured radiation patterns (\(f_1 = 1.90GHz, f_c = 1.98GHz, f_2 = 2.09GHz \))

Fig. 6.4 (a) Computed input impedance (Inverted configuration)
Fig. 6.4 (b) Computed return-loss (Inverted configuration)
Parameters: \(\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 1.6mm, L = 46mm, L_1 = 14mm, L_2 = 14mm, W = 46mm, W_1 = 14mm, W_2 = 14mm, S = 2.5mm, x_r = 3.4mm, x_s = 5.3mm, y_r = 0.0mm, y_s = 0.0mm, r_1 = 0.4mm, r_2 = 0.4mm \)

Fig. 6.4 (c) Computed radiation patterns (\(f_1 = 1.96GHz, f_c = 2.12GHz, f_2 = 2.2GHz \))

Fig. 6.5 (a) Computed input impedance (Normal configuration)
Fig. 6.5 (b) Computed return-loss (Normal configuration)
Parameters: \(\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 0.8mm, L = 46mm, L_1 = 14mm, L_2 = 14mm, W = 46mm, W_1 = 14mm, W_2 = 14mm, S = 2.0mm, x_r = 3.4mm, x_s = 5.3mm, y_r = 0.0mm, y_s = 0.0mm, r_1 = 0.4mm, r_2 = 0.4mm \)

Fig. 6.5 (c) Computed radiation patterns (\(f_1 = 1.74GHz, f_c = 1.82GHz, f_2 = 1.9GHz \))

Fig. 6.6 (a) Computed and Measured input impedance (Normal Configuration)
Fig. 6.6 (b) Computed and Measured return-loss (Normal Configuration)
Parameters: \(\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 0.8mm, L = 46mm, L_1 = 14mm, L_2 = 14mm, W = 46mm, W_1 = 14mm, W_2 = 14mm, S = 2.0mm, x_r = 3.4mm, x_s = 5.3mm, y_r = 0.0mm, y_s = 0.0mm, r_1 = 0.4mm, r_2 = 0.4mm \)

Fig. 6.6 (c) Computed radiation patterns (\(f_1 = 1.98GHz, f_c = 2.07GHz, f_2 = 2.1GHz \))

Fig. 6.6 (d) Measured radiation patterns (\(f_1 = 1.98GHz, f_c = 2.07GHz, f_2 = 2.1GHz \))

Fig. 6.7 (a) Computed and Measured input impedance (Inverted configuration)
Fig. 6.7 (b) Computed and Measured return-loss (Inverted configuration)
Parameters: \(\varepsilon_r = 2.55, \varepsilon_r = 2.2, d_1 = 4.7mm, d_2 = 0.8mm, L = 46mm, L_1 = 14mm, L_2 = 14mm, W = 46mm, W_1 = 14mm, W_2 = 14mm, S = 2.0mm, x_r = 3.4mm, x_s = 5.3mm, y_r = 0.0mm, y_s = 0.0mm, r_1 = 0.4mm, r_2 = 0.4mm \)

Fig. 6.7 (c) Computed radiation patterns (\(f_1 = 1.964GHz, f_c = 2.114GHz \))
Fig. 6.7 (d) Measured radiation patterns \((f_1=1.964 \text{ GHz}, f_2=2.114 \text{ GHz})\)

Fig. 6.8 (a) Computed input impedance (Normal configuration)

Fig. 6.8 (b) Computed return-loss (Normal configuration)

Parameters:
- \(\varepsilon_r 1=2.55, \varepsilon_r 2=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, L=46 \text{mm}, L_1=14 \text{mm}, L_2=14 \text{mm}, W=46 \text{mm}, W_1=14 \text{mm}, W_2=14 \text{mm}, S=0.0 \text{mm}, x_r=3.4 \text{mm}, x_s=5.3 \text{mm}, y_r=0.0 \text{mm}, y_s=0.0 \text{mm}, r_r=0.4 \text{ mm}, r_s=0.4 \text{ mm}\)

Fig. 6.8 (c) Computed radiation patterns \((f_1=1.715 \text{ GHz}, f_2=1.903 \text{ GHz})\)

Fig. 6.9 Variation of resonant frequency with respect to air-gap

Parameters:
- \(\varepsilon_r 1=2.55, \varepsilon_r 2=2.2, d_1=4.7 \text{mm}, r_r=r_s=0.4 \text{mm}, r=0.4 \text{ mm}, r_s=0.4 \text{ mm}\)

Fig. 6.10 Variation of return loss with respect to air-gap

Fig. 6.11 Variation of bandwidth with respect to air-gap

Fig. 6.12 Variation of directivity with respect to air-gap

Fig. 6.13 Variation of radiation efficiency with respect to air-gap

Fig. 6.14 Variation of cross-polarisation with respect to air-gap

Fig. 7.1 Configuration of stacked rectangular patch (With circular slot) coupled shorted circular microstrip antenna (Normal configuration)

Parameters:
- \(\varepsilon_r 1=2.55, \varepsilon_r 2=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, L=55 \text{mm}, W=43.0 \text{ mm}, a_1=8.2 \text{mm}, a_2=10 \text{ mm}, S=1.0 \text{mm}, x_1=3.5 \text{mm}, x_s=5.3 \text{mm}, y_1=0.0 \text{mm}, y_s=0.0 \text{mm}, r_r=0.4 \text{ mm}, r_s=0.4 \text{ mm}\)

Fig. 7.1(a) Computed input impedance

Fig. 7.1(b) Computed return loss

Fig. 7.1(c) Computed radiation patterns \((f_c=2.01 \text{ GHz})\)

Fig. 7.2 Configuration of stacked circular patch (With square slot) coupled shorted square microstrip antenna (Normal configuration)

Parameters:
- \(\varepsilon_r 1=2.55, \varepsilon_r 2=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, L_1=17 \text{mm}, L_2=14 \text{mm}, W_1=17 \text{mm}, W_2=14 \text{mm}, a=25.8 \text{mm}, S=2.0 \text{mm}, x_1=3.4 \text{mm}, x_s=5.3 \text{mm}, y_1=0.0 \text{mm}, y_s=0.0 \text{mm}, r_r=0.4 \text{ mm}, r_s=0.4 \text{ mm}\)

Fig. 7.2(a) Computed input impedance

Fig. 7.2(b) Computed return loss

Fig. 7.2(c) Computed radiation patterns \((f_c=2.065 \text{ GHz})\)

Fig. 7.3 Configuration of stacked rectangular patch (With square slot) coupled shorted square microstrip antenna (Normal configuration)

Parameters:
- \(\varepsilon_r 1=2.55, \varepsilon_r 2=2.2, d_1=4.7 \text{mm}, d_2=0.8 \text{mm}, L=43.0 \text{ mm}, L_1=17 \text{mm}, L_2=14 \text{mm}, W=55.0 \text{mm}, W_1=17 \text{mm}, W_2=14 \text{mm}, S=1.0 \text{mm}, x_1=3.4 \text{mm}, x_s=5.3 \text{mm}, y_1=0.0 \text{mm}, y_s=0.0 \text{mm}, r_r=0.4 \text{ mm}, r_s=0.4 \text{ mm}\)
Fig. 7.3(a) Computed input impedance
Fig. 7.3(b) Computed return loss
Fig. 7.3(c) Computed radiation patterns (f_c=2.0 GHz)
Fig. 7.4 Configuration of stacked square patch (With circular slot) coupled shorted circular microstrip antenna (Normal configuration)
Parameters: \(\varepsilon_r_1=2.55, \varepsilon_r_2=2.2, d_1=4.7\text{mm}, d_2=0.8\text{mm}, L=46\text{mm}, W=46\text{mm}, \)
\(a_1=8.2\text{mm}, a_2=9.6\text{mm}, S=1.0\text{mm}, x_i=3.5\text{mm}, x_e=5.3\text{mm}, y_i=0.0\text{mm}, y_e=0.0\text{mm}, r_e=0.4\text{mm}, r_s=0.4\text{mm} \)
Fig. 7.4(a) Computed input impedance
Fig. 7.4(b) Computed return loss
Fig. 7.4(c) Computed radiation patterns (f_c=1.9 GHz)
Fig. 8.1 Configuration of linear array antenna array
Fig. 9.1 Annular ring coupled shorted circular microstrip antenna array
Fig. 9.1(a) Measured input impedance
Fig. 9.1(b) Measured return loss
Fig. 9.1(c) Measured radiation patterns
Fig. 9.2 Square ring coupled shorted square microstrip antenna array