LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Figure No. with caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fig. 1.1: A typical hysteresis loop illustrating the coercive field E_c, spontaneous polarization P_s and remnant polarization P_r.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Fig. 1.2: Schematic illustration of temperature variation of polarization for first order and second order ferroelectric phase transition.</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Fig. 1.3: A typical M-H hysteresis loop.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Fig. 1.4: Spatial and time inversion symmetry in multiferroics</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Fig. 1.5: (a) Schematic illustrating interrelation among different ferroic orders in multiferroics and (b) relationship between multiferroic and magnetoelectric materials.</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Fig. 1.6: The multiferroic mechanism from charge ordering</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Fig. 1.7: Spiral magnetic order as a mechanism for Ferroelectricity.</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Fig. 1.8: Collinear magnetic order as a mechanism for Ferroelectricity.</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>Fig. 1.9: Atomic and magnetic structure of BiFeO$_3$. The polarization is pointing along the [111] direction and magnetic plane is perpendicular to the polarization direction.</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Fig. 2.1: (a) Schematic illustration of the movement of working parts and balls in a planetary mill and (b) Retsch Planetary Ball Mill PM 100.</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Fig. 2.2: Schematic diagram of X-ray diffractometer [Pan Analyticals X’pert PRO].</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>Fig. 2.3: A simplified schematic diagram of a scanning electron microscope</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>Fig. 2.4: An inter-shell diagram of an atom and energy dispersion illustrating the principle of EDX</td>
<td>47</td>
</tr>
</tbody>
</table>
Fig. 2.5: The vector resolution of ac current in a capacitor.

Fig. 2.6: Representation of cell impedance (Z) on a vector diagram/complex plane.

Fig. 2.7: Phase Sensitive Meter (PSM 1735): N4L impedance analyzer.

Fig. 2.8: Keithley Electrometer (Model 6517B).

Fig. 2.9: The DC Poling Unit.

Fig. 2.10: The P-E loop tracer.

Fig. 2.11: Sawyer-Tower electric circuits for ferroelectric hysteresis loop measurement.

Fig. 2.12: Schematics of the sample rod and puck setup in the dewar of the PPMS.

Fig. 2.13: The magnetoelectric measurement setup

Fig. 3.1: XRD patterns (blue dots) and Reitveld refinement results (solid lines) of pure BiFeO₃.

Fig. 3.2: XRD patterns (blue dots) and Reitveld refinement results (solid lines) for (Bi₁₋ₓBaₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.3: XRD patterns (blue dots) and Reitveld refinement results (solid lines) for (Bi₁₋ₓCaₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.4: XRD patterns (dots) and Reitveld refinement results (solid lines) for (Bi₁₋ₓSrₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.5: SEM micrograph of pure BiFeO₃.

Fig. 3.6: SEM micrograph of (Bi₁₋ₓBaₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.7: SEM micrograph of (Bi₁₋ₓCaₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.8: SEM micrograph of (Bi₁₋ₓSrₓ)(Fe₁₋ₓMnₓ)O₃ (x = 0.05, 0.10, 0.15, 0.20) samples.
Fig. 3.9: EDX spectrum and elemental stoichiometry of BiFeO$_3$.

Fig. 3.10: EDX spectrum and elemental stoichiometry (Bi$_{1-x}$Ba$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.11: EDX spectrum and elemental stoichiometry (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 3.12: EDX spectrum and elemental stoichiometry (Bi$_{1-x}$Sr$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.05, 0.10, 0.15, 0.20) samples.

Fig. 4.1: Variation of dielectric constant (ε_r) with frequency for (Bi$_{1-x}$Ba$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.2: Variation of tangent loss ($\tan \delta$) with frequency for (Bi$_{1-x}$Ba$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.3: Variation of dielectric constant (ε_r) with frequency for (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.4: Variation of tangent loss ($\tan \delta$) with frequency for (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.5: Variation of dielectric constant (ε_r) with frequency for (Bi$_{1-x}$Sr$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.6: Variation of tangent loss ($\tan \delta$) with frequency for the (Bi$_{1-x}$Sr$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 4.7: Variation of dielectric constant (ε_r) with temperature of the (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.
Fig. 4.8: Variation of dielectric loss (tan δ) with temperature for (Bi$_{1-x}$Ca$_x$)
(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.

Fig. 4.9: Variation of relative dielectric constant (εr) with temperature for
(Bi$_{1-x}$Ba$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.

Fig. 4.10: Variation of dielectric loss (tan δ) with temperature for (Bi$_{1-x}$Ba$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.

Fig. 4.11: Variation of relative dielectric constant (εr) with temperature for
(Bi$_{1-x}$Sr$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.

Fig. 4.12: Variation of dielectric loss (tan δ) with temperature for (Bi$_{1-x}$Sr$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at three different frequencies.

Fig. 5.1: Variation of Z’ with frequency of (Bi$_{1-x}$Ba$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.2: Variation of Z’ with frequency of (Bi$_{1-x}$Ca$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.3: Variation of Z’ with frequency of (Bi$_{1-x}$Sr$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.4: Variation of Z’’ with frequency of (Bi$_{1-x}$Ba$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.5: Variation of Z’’ with frequency of (Bi$_{1-x}$Ca$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.6: Variation of Z’’ with frequency of (Bi$_{1-x}$Sr$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples at few selected temperatures.

Fig. 5.7: Complex impedance spectrum of pure BiFeO$_3$ at selected
temperature with equivalent electrical circuit (inset).

54 Fig. 5.8: Complex impedance spectrum of $(\text{Bi}_{1-x}\text{Ba}_x)(\text{Fe}_{1-x}\text{Mn}_x)\text{O}_3$ $(x = 0.05, 0.10, 0.15, 0.20)$ samples at different temperature with electrical equivalent circuit (inset).

55 Fig. 5.9: Complex impedance spectrum of $(\text{Bi}_{1-x}\text{Ca}_x)(\text{Fe}_{1-x}\text{Mn}_x)\text{O}_3$ $(x = 0.05, 0.10, 0.15, 0.20)$ samples at different temperature with electrical equivalent circuit (inset).

56 Fig. 5.10: Complex impedance spectrum of $(\text{Bi}_{1-x}\text{Sr}_x)(\text{Fe}_{1-x}\text{Mn}_x)\text{O}_3$ $(x = 0.05, 0.10, 0.15, 0.20)$ samples at different temperature with electrical equivalent circuit (inset).

57 Fig. 6.1: Variation of ac conductivity with frequency for $\text{Bi}_{1-x}\text{Ba}_x\text{Fe}_1-x\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples at few selected temperatures.

58 Fig. 6.2: Variation of ac conductivity with frequency for $\text{Bi}_{1-x}\text{Ca}_x\text{Fe}_1-x\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples at few selected temperatures.

59 Fig. 6.3: Variation of ac conductivity with frequency for $\text{Bi}_{1-x}\text{Sr}_x\text{Fe}_1-x\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples at few selected temperatures.

60 Fig. 6.4: Variation of ac conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Ba}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples at three different frequencies.

61 Fig. 6.5: Variation of ac conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Ca}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x=0-0.20)$ samples at three different frequencies.

62 Fig. 6.6: Variation of ac conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Sr}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples at three different frequencies.

63 Fig. 6.7: Variation of dc conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Ba}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples.

64 Fig. 6.8: Variation of dc conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Ca}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples.

65 Fig. 6.9: Variation of dc conductivity with inverse of absolute temperature for $\text{Bi}_{1-x}\text{Sr}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ $(x = 0-0.20)$ samples.
Fig. 6.10: Variation of current density (J) with electric field (E) at various temperatures of Bi$_{1-x}$Ba$_x$Fe$_{1-x}$Mn$_3$O$_9$ (x = 0 - 0.20) samples.

Fig. 6.11: Variation of current density (J) with electric field (E) at various temperatures of Bi$_{1-x}$Ca$_x$Fe$_{1-x}$Mn$_3$O$_9$ (x = 0 - 0.20) samples.

Fig. 6.12: Variation of current density (J) with electric field (E) at various temperatures of Bi$_{1-x}$Sr$_x$Fe$_{1-x}$Mn$_3$O$_9$ (x = 0 - 0.20) samples.

Fig. 7.1: Room temperature P-E loop of the (Bi$_{1-x}$Ba$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.2: Room temperature P-E loop for the (Bi$_{1-x}$Ca$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.3: Room temperature P-E loop for (Bi$_{1-x}$Sr$_x$) (Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.4: Room temperature M-H curve of (Bi$_{1-x}$Ba$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.5: Room temperature M-H curve of (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.6: Room temperature M-H curve of (Bi$_{1-x}$Sr$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.7: Room temperature dc bias magnetic field dependence of magnetoelectric coefficients (α_{ME}) for (Bi$_{1-x}$Ba$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.8: Room temperature dc bias magnetic field dependence of magnetoelectric coefficients (α_{ME}) for (Bi$_{1-x}$Ca$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.

Fig. 7.9: Room temperature dc bias magnetic field dependence of magnetoelectric coefficients (α_{ME}) for (Bi$_{1-x}$Sr$_x$)(Fe$_{1-x}$Mn$_x$)O$_3$ (x = 0.0, 0.05, 0.10, 0.15, 0.20) samples.