CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
</tr>
<tr>
<td>v</td>
</tr>
<tr>
<td>xi</td>
</tr>
<tr>
<td>xv</td>
</tr>
<tr>
<td>xxii</td>
</tr>
<tr>
<td>xxiv</td>
</tr>
</tbody>
</table>

1. Introduction
 1.1 Characteristics features of metal matrix composite
 1.1.1 Types of composite materials
 1.1.2 Properties of aluminium metal matrix composite
 1.1.3 Engineering application of metal matrix composites
 1.2 Basic need of processing the metal matrix composites
 1.3 Problems encountered in processing of aluminium metal matrix composites
 1.4 Literature review

2. Fabrication of stir casting setup and experimental planning
 2.1 Development of stir casting setup
 2.2 Fabrication of stir casting setup
 2.3 Brief planning for casting
 2.3.1 Mould Making
 2.3.2 Preparation of Mould Cavity
 2.3.3 Estimation of Raw Materials for Al/5, 10, 15vol.% SiC-MMC casting
 2.3.4 Estimation of Raw Materials for Al/5, 10, 15vol.% Al₂O₃-MMC casting
 2.3.5 Estimation of Raw Materials for Al/5, 10, 15vol.% Grp-MMC casting
 2.3.6 Measuring and Testing Equipments used for Experimental Investigation
 2.4 Flow chart of experimental investigation

3. Stir casting of metal matrix composites
 3.1 Scheme of experiment for stir casting
 3.2 Raw Materials Used
 3.3 Experimental Procedure

4. Test results and analysis for physical, chemical and mechanical properties of stir cast samples
 4.1 Scheme of testing and analysis
 4.2 Planning for property testing
4.3 Physical test results and analysis 49
4.4 Quantitative assessment of reinforcement particles 50
4.5 Mechanical test results and analysis 55
4.5.1 Micro hardness test 55
4.5.2 Tensile strength test 57
4.6 Microstructural characterization 67
4.6.1 Microstructure testing 67
4.6.2 Testing results and discussion 69
5 Optimisation of stir casting parameters and development of mathematical model for microhardness and tensile strength 78
5.1 Planning for experimentation 79
5.1.1 Design of experimental plan based on orthogonal array 79
5.2 Analysis of variance (ANOVA) for 3^2 factorial design to measure the relative effects of casting parameters on casting performance criterion 81
5.3 S/N ratio, ANOVA and mathematical model 82
5.3.1 S/N ratio, ANOVA and mathematical model for Al/5 vol% SiC MMC 83
5.3.1.1 L_27(3^13) orthogonal array with experimental results of microhardness 83
5.3.1.2 S/N ratio for microhardness of prepared Al/5 vol% SiC MMC 85
5.3.1.3 ANOVA for microhardness of prepared Al/5 vol% SiC MMC 85
5.3.1.4 Mathematical model for microhardness of prepared Al/5 vol% SiC MMC 86
5.3.1.5 Analysis of parametric interaction on microhardness of prepared Al/5 vol% SiC MMC 87
5.3.1.6 L_27(3^13) orthogonal array with experimental results of Tensile strength of prepared Al/5 vol% SiC MMC 89
5.3.1.7 S/N ratio for Tensile strength of prepared Al/5 vol% SiC MMC 89
5.3.1.8 ANOVA for Tensile strength of prepared Al/5 vol% SiC MMC 90
5.3.1.9 Mathematical model for Tensile strength of prepared Al/5 vol% SiC MMC 91
5.3.2 Analysis of parametric interaction on tensile strength of prepared Al/5 vol% SiC MMC 91
5.3.3 Optimisation of casting parameters for Al/10 vol% SiC MMC 93
5.3.3.1 L_27(3^13) orthogonal array with experimental results of microhardness of Al/10 vol% SiC MMC 93
5.3.3.2 S/N ratio for microhardness of prepared Al/10 vol% SiC MMC 95
5.3.3.3 ANOVA for microhardness of prepared Al/10 vol% SiC MMC 95
5.3.3.4 Mathematical model for microhardness of prepared Al/10 vol% SiC MMC 96
5.3.3.5 Analysis of parametric interaction on microhardness of prepared Al/10 vol% SiC MMC
5.3.3.6 L27(3^13) orthogonal array with experimental results of Tensile strength of prepared Al/10 vol% SiC MMC
5.3.3.7 S/N ratio for Tensile strength of prepared Al/10 vol% SiC MMC
5.3.3.8 ANOVA for Tensile strength of prepared Al/10 vol% SiC MMC
5.3.3.9 Mathematical model for Tensile strength of prepared Al/10 vol% SiC MMC
5.3.4 Analysis of parametric interaction on microhardness of prepared Al/15 vol% SiC MMC
5.3.4.1 L27(3^13) orthogonal array with experimental results of microhardness of prepared Al/15 vol% SiC MMC
5.3.4.2 S/N ratio for microhardness of prepared Al/15 vol% SiC MMC
5.3.4.3 ANOVA for microhardness of prepared Al/15 vol% SiC MMC
5.3.4.4 Mathematical model for microhardness of prepared Al/15 vol% SiC MMC
5.3.5 Optimization of casting parameters for Al/5 vol% Al2O3 MMC
5.3.5.1 L27(3^13) orthogonal array with experimental results of microhardness of Al/5 vol% Al2O3
5.3.5.2 S/N ratio for microhardness of prepared Al/5 vol% Al2O3 MMC
5.3.5.3 ANOVA for microhardness of prepared Al/5 vol% Al2O3 MMC
5.3.5.4 Mathematical model for microhardness of prepared Al/5 vol% Al2O3 MMC
5.3.5.5 L27(3^13) orthogonal array with experimental results of Tensile strength of prepared Al/5 vol% Al2O3 MMC
5.3.5.6 S/N ratio for Tensile strength of prepared Al/5 vol% Al2O3 MMC
5.3.5.7 ANOVA for Tensile strength of prepared Al/5 vol% Al2O3 MMC
5.3.5.8 Mathematical model for Tensile strength of prepared Al/5 vol% Al2O3 MMC
5.3.6 Optimization of casting parameters for Al/10 vol% Al2O3 MMC
5.3.6.1 L27(3^13) orthogonal array with experimental results of microhardness of Al/10 vol% Al2O3 MMC
5.3.6.2 S/N ratio for microhardness of prepared Al/10 vol% Al2O3 MMC
5.3.6.3 ANOVA for microhardness of prepared Al/10 vol% Al2O3 MMC
5.3.6.4 Mathematical model for microhardness of prepared Al/10 vol% Al2O3 MMC
5.3.6.5 L27(3^13) orthogonal array with experimental results of Tensile strength of prepared Al/10 vol% Al2O3 MMC
5.3.6.6 S/N ratio for Tensile strength of prepared Al/10 vol% Al2O3 MMC
5.3.6.7 ANOVA for Tensile strength of prepared Al/10 vol% Al₂O₃ MMC
5.3.6.8 Mathematical model for Tensile strength of prepared Al/10 vol% Al₂O₃ MMC
5.3.7 S/N Ratio, ANOVA and Mathematical model for Al/15 vol% Al₂O₃ MMC
5.3.7.1 L₂⁷(3¹³) orthogonal array with experimental results of microhardness of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.2 S/N ratio for microhardness of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.3 ANOVA for microhardness of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.4 Mathematical model for microhardness of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.5 L₂⁷(3¹³) orthogonal array with experimental results of Tensile strength of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.6 S/N ratio for Tensile strength of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.7 ANOVA for Tensile strength of prepared Al/15 vol% Al₂O₃ MMC
5.3.7.8 Mathematical model for Tensile strength of prepared Al/15 vol% Al₂O₃ MMC
5.3.8 S/N Ratio, ANOVA and mathematical model for Al/5 vol% Grp MMC
5.3.8.1 L₂⁷(3¹³) orthogonal array with experimental results of microhardness Al/5 vol% Grp MMC
5.3.8.2 S/N ratio for microhardness of prepared Al/5 vol% Grp MMC
5.3.8.3 ANOVA for microhardness of prepared Al/5 vol% Grp MMC
5.3.8.4 Mathematical model for microhardness of prepared Al/5 vol% Grp MMC
5.3.8.5 L₂⁷(3¹³) orthogonal array with experimental results of Tensile strength of prepared Al/5 vol% Grp MMC
5.3.8.6 S/N ratio for Tensile strength of prepared Al/5 vol% Grp MMC
5.3.8.7 ANOVA for Tensile strength of prepared Al/5 vol% Grp MMC
5.3.8.8 Mathematical model for Tensile strength of prepared Al/5 vol% Grp MMC
5.3.9 S/N Ratio, ANOVA and mathematical model for Al/10 vol% Grp MMC
5.3.9.1 L₂⁷(3¹³) orthogonal array with experimental results of microhardness Al/10 vol% Grp MMC
5.3.9.2 S/N ratio for microhardness of prepared Al/10 vol% Grp MMC
5.3.9.3 ANOVA for microhardness of prepared Al/10 vol% Grp MMC
5.3.9.4 Mathematical model for microhardness of prepared Al/10 vol% Grp MMC
5.3.9.5 L₂⁷(3¹³) orthogonal array with experimental results of Tensile strength of prepared Al/10 vol% Grp MMC
5.3.9.6 S/N ratio for Tensile strength of prepared Al/10 vol% Grp MMC
5.3.9.7 ANOVA for Tensile strength of prepared Al/10 vol% Grp MMC
5.3.9.8 Mathematical model for Tensile strength of prepared Al/10 vol% Grp MMC
5.3.10 S/N Ratio, ANOVA and mathematical model for Al/15 vol% Grp MMC
5.3.10.1 L$_2$(313) orthogonal array with experimental results of microhardness Al/15 vol% Grp MMC
5.3.10.2 S/N ratio for microhardness of prepared Al/15 vol% Grp MMC
5.3.10.3 ANOVA for microhardness of prepared Al/15 vol% Grp MMC
5.3.10.4 Mathematical model for microhardness of prepared Al/15 vol% Grp MMC
5.3.10.5 L$_2$(313) orthogonal array with experimental results of Tensile strength of prepared Al/15 vol% Grp MMC
5.3.10.6 S/N ratio for Tensile strength of prepared Al/15 vol% Grp MMC
5.3.10.7 ANOVA for Tensile strength of prepared Al/15 vol% Grp MMC
5.3.10.8 Mathematical model for Tensile strength of prepared Al/15 vol% Grp MMC
5.4 Verification to test the validity of developed mathematical model
5.4.1 Test of model equation 5.18
5.4.2 Test of model equation 5.18
6 Machining study on cast MMC
6.1 Machinability: an overview on selective criteria
6.1.1 Tool Wear Rate
6.1.2 Achievable Surface Finish
6.1.3 Chip Formation
6.1.4 Built-Up Edge Formation
6.2 Planning for machining of MMC
6.3 Experimental results and discussion
6.3.1 Scheme of Experimentation
6.3.2 Turning of Al/sic MMC
6.3.2.1 Influence of Dominant Machining Parameters on Tool Wear during Machining of Al/5vol%SiC-MMC
6.3.2.2 Influence of Dominant Machining Parameters on Surface Finish during Machining of Al/5vol%SiC-MMC
6.3.2.3 Influence of Dominant Machining Parameters on Tool Wear during Machining of Al/10vol%SiC-MMC
6.3.2.4 Influence of Dominant Machining Parameters on Surface Finish during Machining of Al/10vol%SiC-MMC
6.3.2.5 Influence of Dominant Machining Parameters on Tool Wear during Machining of Al/15vol%SiC-MMC
6.3.2.6 Influence of Dominant Machining Parameters on Surface Finish during Machining of Al/15vol%SiC-MMC
6.3.3 Turning of Al/Al$_2$O$_3$ MMC
6.3.3.1 Influence of Dominant Machining Parameters on Tool Wear during Machining of Al/5vol%Al$_2$O$_3$-MMC
6.3.3.2 Influence of Dominant Machining Parameters on Surface Finish during Machining of Al/5% vol Al$_2$O$_3$-MMC
6.3.3.3 Influence of Dominant Machining Parameters on Tool Wear during Machining of Al/10vol%Al$_2$O$_3$-MMC
6.3.3.4 Influence of Dominant Machining Parameters on Surface Finish during Machining of Al/10% vol Al$_2$O$_3$-MMC
6.3.3.5 Influence of Dominant Machining Parameters on Tool Wear
during Machining of Al/15vol% Al₂O₃-MMC
6.3.3.6 Influence of Dominant Machining Parameters on Surface Finish
during Machining of Al/15% vol Al₂O₃-MMC
6.3.4 Turning of Al/Grp – MMC
6.3.4.1 Influence of Dominant Machining Parameters on Tool Wear
during Machining of Al/5vol% Grp -MMC
6.3.4.2 Influence of Dominant Machining Parameters on Surface Finish
during Machining of Al/10% vol Grp-MMC
6.3.4.3 Influence of Dominant Machining Parameters on Tool Wear
during Machining of Al/15% vol Grp -MMC
6.3.4.4 Influence of Dominant Machining Parameters on Surface Finish
during Machining of Al/15 vol% Grp-MMC
6.3.4.5 Influence of Dominant Machining Parameters on Tool Wear
during Machining of Al/15 vol% Grp-MMC
6.3.4.6 Influence of dominant machining parameters on surface finish
during machining of Al/15% vol Grp-mmc
6.4 Discussion
6.4.1 Comparative cutting performance of tools on prepared Metal
Matrix Composite specimens
7 Welding of stir cast metal matrix composites
7.1 Weldability: an overview
7.2 Welding procedure
7.2.1 Experimental set up
7.3 Testing of weld joints
7.4 Experimental results and discussion
7.4.1 Scheme of experimentation
7.5 Test results
7.5.1 Test results for microhardness(VHN) of Al/5,10,15 vol% Al₂O₃
MMC
7.5.2 Test results for microhardness(VHN) of Al/5,10,15 vol% SiCp
MMC
7.5.3 Test results for microhardness(VHN) of Al/5,10,15 vol% Grp
MMC
7.5.4 Test results for ultimate tensile strength(MPa) Al/5,10,15 vol%
Al₂O₃ MMC
7.5.5 Test results for ultimate tensile strength(MPa) Al/5,10,15 vol%
SiCp MMC
7.5.6 Test results for ultimate tensile strength(MPa) Al/5,10,15 vol%
SiCp MMC
7.6 Microstructural Investigation in Welded specimens
8 Conclusions
Bibliography