LIST OF FIGURES

Fig. 1. Structure of various triphenylmethane dyes.
Fig. 2. Elimination of color from textile and dye-stuff industrial waste.
Fig. 3. Elimination of dissolved organic carbon (DOC) from textile and dye-stuff industrial waste.
Fig. 4. Degradation of Crystal Violet by Nocardia corallina.
Fig. 5. Spectrophotometric scan of Crystal Violet (1), Malachite Green (2), Magenta (3), and synthetic effluent (4) before (a) and after (b) treatment. Untreated dyes were four fold diluted to get the peaks in range. Synthetic effluent contained 1.0 g/L each of Crystal Violet, Malachite Green, and Magenta.
Fig. 6. Bacillus sp. showing the zone of Crystal Violet decolorization in solid medium. Dye concentration used was 30 ppm. Uninoculated (A) and inoculated plates were incubated at 30°C for two (B), three (C), and five (D) days, respectively.
Fig. 7. Bacillus sp. showing the zone of Malachite Green decolorization in solid medium. Dye concentration used was 30 ppm. Uninoculated (A) and inoculated plates were incubated at 30°C for two (B), three (C), and five (D) days, respectively.
Fig. 8. Bacillus sp. showing the zone of Magenta decolorization in solid medium. Dye concentration used was 30 ppm. Uninoculated (A) and inoculated plates were incubated at 30°C for two (B), three (C), and five (D) days, respectively.
Fig. 9. Course of cultivation of Bacillus sp. in shake flask at 30 and 37°C.
Fig. 10. Course of cultivation of Bacillus sp. at pH 7.0.
Fig. 11. Effect of initial cultivation pH on the decolorization activity of Bacillus sp.
Fig. 12. Effect of inoculum size (%, w/v) on the growth of Bacillus sp.
Fig. 13. Effect of inoculum size (% v/v) on maximum cellmass production, decolorization activity, and lag period of Bacillus sp.
Fig. 14. Effect of carbon sources on cellmass production and decolorization activity of *Bacillus* sp.

Fig. 15. Effect of organic nitrogen sources on cellmass production and dye decolorization activity of *Bacillus* sp.

Fig. 16. Effect of inorganic nitrogen sources on cellmass production and dye decolorization activity of *Bacillus* sp.

Fig. 17. Effect of growth factors on cellmass production and dye decolorization activity of *Bacillus* sp.

Fig. 18. Effect of buffer salts on cellmass production and dye decolorization activity of *Bacillus* sp.

Fig. 19. Course of cultivation of *Bacillus* sp. in the presence of glucose (a), maltose (b), and sucrose (c) as carbon source.

Fig. 20. Scanning electron microscopy showing the flocculation of *Bacillus* sp. after 24 h of growth in nutrient broth.

Fig. 21. Effect of agitation on growth (a), decolorization activity (b), and glucose utilization (c) by *Bacillus* sp. in fermenter.

Fig. 22. Effect of aeration rate on growth (a), decolorization activity (b), and glucose utilization (c) by *Bacillus* sp. in fermenter.

Fig. 23. Effect of different glucose concentration on growth (a), decolorization activity (b), and its consumption (c) by *Bacillus* sp. in fermenter.

Fig. 24. Course of cultivation of *Bacillus* sp. in absence of buffer salts.

Fig. 25. Course of cultivation of *Bacillus* sp. in fermenter (working volume 5.0 L; initial pH 7.0; temperature 30°C; glucose concentration 10 g/L; aeration rate 0.5 vvm; agitation 400 rpm).

Fig. 26. Effect of pH on the decolorization activity of the cells of *Bacillus* sp.

Fig. 27. Effect of temperature on the decolorization activity of the cells of *Bacillus* sp.

Fig. 28. Thermostability of the decolorization activity by *Bacillus* sp. at 30, 37, and 50°C.

Fig. 29. Growth (a), decolorization (b), and glucose utilization (c) by the growing cells of *Bacillus* sp. in the presence of different concentrations (200 to 400 ppm) of Crystal Violet.
Fig. 30. Growth (a), decolorization (b), and glucose utilization (c) by the growing cells of *Bacillus sp.* in the presence of different concentrations (200 to 400 ppm) of Malachite Green.

Fig. 31. Growth (a), decolorization (b), and glucose utilization (c) by the growing cells of *Bacillus sp.* in the presence of different concentrations (200 to 400 ppm) of Magenta.

Fig. 32. Scanning electron microscopy (SEM) of the *Bacillus sp.* grown in nutrient broth without (A) and with (B) Crystal Violet. The concentration of Crystal Violet was 25 mg/L.

Fig. 33. Transmission electron microscopy (TEM) of the *Bacillus sp.* grown in nutrient broth without (A) and with (B) Crystal Violet. The concentration of Crystal Violet was 25 mg/L.

Fig. 34. Decolorization of Crystal Violet, Malachite Green, and Magenta (100 ppm each) with resting cells of the *Bacillus sp.*

Fig. 35. Time taken for complete (100%) decolorization of various triphenylmethane dyes with resting cells of *Bacillus sp.*

Fig. 36. Performance of packed column reactors for the decolorization of different triphenylmethane dyes by immobilized *Bacillus sp.*

Fig. 37. Scanning electron microscopy (SEM) of the *Bacillus sp.* immobilized in the calcium alginate matrix.

Fig. 38. Reduction in COD values with 100 ppm triphenylmethanes dyes after treatment by *Bacillus sp.*

Fig. 39. Effect of Crystal Violet (untreated and treated) on the specific growth rates of *E. coli* (a), *S. cerevisiae* (b), and *S. pombe* (c).

Fig. 40. Effect of Malachite Green (untreated and treated) on the specific growth rates of *E. coli* (a), *S. cerevisiae* (b), and *S. pombe* (c).

Fig. 41. Relationship between log \(G \) and log \([H/(1-H)] \) for different test organisms with Crystal Violet (a) and Malachite (b).

Fig. 42. Reduction in specific growth rate values of *Bacillus sp.* in the presence of dyes.

Fig. 43. Relationship between log \(G \) and log \([H/(1-H)] \) for *Bacillus sp.* with various triphenylmethane dyes.
Fig. 44. Decolorization of triphenylmethane dyes with growing cells of *Pleurotus ostreatus* in static culture condition.