CONTENTS

Certificate ii
Abstract iii
Dedication xiii
Acknowledgements xv
Contents xvii
List of Figures xxvii
List of Tables xxvi
List of Publications xxix
List of Abbreviations xxxi

CHAPTER 1 INTRODUCTION 1

1.1 Energy demand 1
1.2 Vegetable oil as fuel 2
1.2.1 Dilution (Blending) 3
1.2.2 Micro-emulsification 3
1.2.3 Pyrolysis (Thermal cracking) 4
1.2.4 Transesterification 4
1.3 Biodiesel 6
1.4 Influence of the different parameters on the biodiesel production 6
1.4.1 Effect of molar ratio 8
1.4.2 Effect of temperature 8
1.4.3 Effect of water and free fatty acid contents on the yield of biodiesel 8
1.4.4 Effect of catalyst content 9
1.5 Biodiesel properties and specifications 9
1.6 Major sources for biodiesel production 10
1.7 Performance of diesel engines using biodiesel 11
1.8 Emissions using biodiesel 12
1.9 Advantages of biodiesel 14
1.10 Disadvantages of biodiesel 14
1.11 Objectives of the present work 17
CHAPTER 2
LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Food versus fuel issue</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Oxidation stability</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Low temperature flow properties</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Minor components</td>
<td>35</td>
</tr>
</tbody>
</table>

CHAPTER 3
EXPERIMENTAL MATERIALS AND PROCEDURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Selection of fuel</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthesis of biodiesel</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Fatty acid methyl ester composition</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Antioxidants and metal deactivator</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Metal contamination</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Testing of synthesized biodiesel samples for the oxidation stability, low temperature flow properties and other physico-chemical properties</td>
<td>45</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Oxidation stability</td>
<td>45</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Low temperature flow properties</td>
<td>46</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Cloud point</td>
<td>46</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Pour point</td>
<td>46</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Cold filter plugging point</td>
<td>48</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Flash point</td>
<td>49</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Kinematic viscosity</td>
<td>50</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Sulphated ash</td>
<td>50</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Sulphur</td>
<td>51</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Copper strip corrosion</td>
<td>51</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Water and sediments</td>
<td>51</td>
</tr>
<tr>
<td>3.6.9</td>
<td>Carbon residue</td>
<td>51</td>
</tr>
<tr>
<td>3.6.10</td>
<td>Total acid number</td>
<td>52</td>
</tr>
<tr>
<td>3.6.11</td>
<td>Free glycerin</td>
<td>52</td>
</tr>
<tr>
<td>3.6.12</td>
<td>Total glycerin</td>
<td>52</td>
</tr>
<tr>
<td>3.6.13</td>
<td>Phosphorus content</td>
<td>53</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESULTS AND DISCUSSION 55

4.1 Analyses of jatropha biodiesel 55
 4.1.1 Oxidation stability of the jatropha biodiesel 55
 4.1.2 Fatty acid methyl ester composition of jatropha biodiesel 57
 4.1.3 Improvement of the oxidation stability of the neat jatropha biodiesel 57
 4.1.4 Influence of the metal contaminants on the oxidation stability 59
 4.1.5 Improvement of the oxidation stability of metal-contaminated jatropha biodiesel 61
 4.1.6 Synergistic effect of metal deactivator and antioxidant on the oxidation stability of metal-contaminated jatropha biodiesel 62

4.2 Analyses of pongamia biodiesel 65
 4.2.1 Oxidation stability of the pongamia methyl ester 67
 4.2.2 Fatty acid methyl ester composition of pongamia biodiesel 67
 4.2.3 Improvement of the oxidation stability of neat pongamia biodiesel 68
 4.2.4 Influence of the metal contaminants on the oxidation stability of pongamia methyl ester 69
 4.2.5 Improvement of the oxidation stability of metal-contaminated pongamia methyl ester 70
 4.2.6 Synergistic effect of metal deactivator and antioxidant on the oxidation stability of metal-contaminated pongamia methyl ester 71

4.3 Analyses of palm biodiesel 75
 4.3.1 Oxidation stability of the palm biodiesel 77
 4.3.2 Fatty acid methyl ester composition of palm biodiesel 77
 4.3.3 Influence of the metal contaminants on the oxidation stability of palm biodiesel 77
 4.3.4 Improvement of the oxidation stability of metal-contaminated palm biodiesel 79

4.4 Influence of the natural and synthetic antioxidants on the oxidation stability of jatropha biodiesel 83

4.5 Effect of the minor contaminants on the physico-chemical properties of biodiesel 84
 4.5.1 Effect of monoglycerides, water, and soap contamination on the low temperature flow properties and oxidation stability of jatropha biodiesel 85
4.5.2 Effect of monoglycerides, water, and soap contamination on the low temperature flow properties and oxidation stability of pongamia biodiesel

4.6 Effect of blends of palm-jatropha-pongamia biodiesels on the low temperature flow properties (food versus fuel issue: a possible solution)

4.6.1 Biodiesel testing

4.6.2 Cloud point and pour point study

4.6.2.1 Blending of two biodiesels

4.6.2.2 Blending of three biodiesels

4.6.3 Cold filter plugging point study

4.6.3.1 Blending of two biodiesels

4.6.3.2 Blending of three biodiesels

4.6.4 Dependence of cloud point and pour point on the methyl esters of the fatty acid compositions (statistical relations)

4.6.5 Dependence of cold filter plugging point on the methyl esters of the fatty acid compositions (statistical relations)

4.7 Blends of biodiesels synthesized from non-edible and edible oils: influence on the oxidation stability

4.7.1 Biodiesel testing

4.7.2 Analyses of biodiesel samples

4.7.3 Oxidation stability study

4.7.3.1 Blending of two biodiesels

4.7.3.2 Blending of three biodiesels

4.7.4 Correlation of the oxidation stability with methyl esters of fatty acid compositions

CHAPTER 5 CONCLUSION AND SCOPE FOR FUTURE WORK

5.1 Conclusion

5.2 Scope for future work

REFERENCES

BIO-DATA