Ethnobotany is considered a branch of ethnobiology, the study of past and present interrelationships between human cultures and the plants, animals, and other organisms in their environment. Like its parent field, ethnobotany makes apparent the connection between human cultural practices and the sub-disciplines of biology. Ethno-botanical studies range across space and time, from archaeological investigations of the role of plants in ancient civilizations to the bioengineering of new crops. Nonetheless, indigenous, non-westernized cultures play a crucial role in ethno-botany, as they possess a previously undervalued knowledge of local ecology gained through centuries or even millennia of interaction with their biotic (living) environment.

Ethnobotany is usually defined as anthropological approach to botany. There are several methods of ethno-botanical research and those relevant to medicinal plants are archaeological search in literature, herbaria and the field studies. “Man, ever desirous of knowledge, has already explored many things, but more and greater still remains concealed; perhaps reserved for far distant generations, who shall prosecute the examination of their creator’s work in remote countries and make many discoveries for the pleasure and convenience of life.”
The above quotation of Linnaeus is the most appropriate which deals with the relationship between medicinal plants and the total field of ethnobotany. Our ancient literature can also be tapped for information on medicinal plants. No authentic record of any kind except a few archaeological sculptures of Mohenjo-Daro is available from the pre-vedic period in this country. But, Rigveda and Atharvaveda, which date back to 2000 to 1000 B.C. which are our oldest Vedic literature resources, contain valuable information regarding medicinal plants of that period.

The real era of medicinal science was started with the development of the Ayurveda and the knowledge of ancient Egyptian therapeutist obtained from Ebers Papyrus which was written about 1550 B.C. The best memorable work of Sushruta Samhita appeared in 700 B.C. is said to be the golden age of Indian medicinal culture. Beginning in the twentieth century, the field of ethno-botany experienced a shift from the raw compilation of data to a greater methodological and conceptual reorientation. Today, the practice of ethnobotany requires a variety of skills. Ethno-botany becomes a more important and interesting subject when its study reaches a point when the results are studied comparatively. For example, *Ficus religious* and *Ficus racemosa* are among the most important sacred as well as medicinal plants of antiquity.
An outstanding work containing wealth of information on economic plants in six volumes was produced by Watt (1889-93) in the form of Dictionary of Economic Plants of India. Kirtikar and Basu (1935) published a voluminous work on Indian Medicinal plants. Chopra (1933) produced a treatise on Indigenous Drugs of India. This was followed by Indian Materia Medica by Nadkarni (1955). Chopra et al., (1956) wrote Glossary of Indian Medicinal Plants. Later CSIR come out with a consolidated account and updated information on economic plants in wealth of India series. Many regional flora and accounts on medicinal plants appeared in India during the last few decades.

Jain and Tarafdar (1964) have made an observation on Nyctanthes arboristris and collected all the ethnobotanical and phytochemical information of the plants.

A good deal of works has been done on the ethnobotany and medicinal plants in India and abroad. Several reports on Amchi system of Medicine in Ladakh (J&K) enumerating the herbs used by the local medicine practitioners (Amchis) have appeared in the recent past (Ragunathan, 1976; Satyavati et al.,1976; Dhar,1980; Nawchoo and Buth,1989; Kaul et al.,1995). An in-depth ethno-botanical survey of Western
REVIEW OF LITERATURE

Himalaya has been carried out by Kaul (1996). However, the Baramulla district of Kashmir valley has remained neglected from this point of view except for some stray records.

The loss of biological diversity and degradation of habitats and ecosystems will profoundly affect the future generations. Now it is well understood and realized that, as a result of various natural and unnatural causes, the earth’s biological resources are under pressure and dwindling very fast. This loss of biodiversity also has serious impact on the World’s environment and economy. During last few decades there has been significant consciousness with regard to loss of biodiversity and its conservation. An outstanding work on cultivation and utilization of medicinal and aromatic plants was produced by Atal and Kapur (1977).

Singh and Singh (1981) while working with Edible wild Plants of eastern Rajasthan reported 97 species of wild plants belonging to 75 genera and 49 families, which provide edible fruits, seeds tubers and leaves from eastern Rajasthan. Attempts have also been made to cite the main chemical contents of edible parts based on available literature. About 14 species have been recommended for cultivation.
Caceres et al., (1990) gave an account of the plants used in Guatemala for the treatment of gastrointestinal disorders. They screened out 84 plants against entero-bacteria and stated that 385 plants from 95 families are used in Guatemala for the treatment of gastrointestinal disorders. The activity of 84 most commonly used plants was screened \textit{in vitro} against five entero-bacteria pathogenic to man.

Pandey et al., (1991) studied the “conservation inventory of high altitude medicinal plants of western Himalayas” used in Indian system of medicine. The authors identified 36 such herbs in the region and described their economic importance and utility.

Siddique et al., (1995) determined the “status of important medicinal plants of Kashmir Himalayas”. During their three year survey, the well known medicinal and aromatic plants used in the area have been listed along with the plant part(s) used and the mode of administration. The authors also formulated a list of rare and endangered plants of the area.

Rana et al., (1998) worked on “Diversity and conservation strategies of medicinal plants in the north-western Himalayas” and enumerated the major medicinal herbs present in the north-western Himalayas from Kashmir to Kumaon which have been lost due to continuous loss of forest land,
uncontrolled grazing and unscientific collection. On the basis of this observation they emphasized upon the importance of conservation of medicinal plant diversity and demanded a national concern for it.

Kant and Sharma (2001) presented their studies on the “Medicinal plants of Patnitop and adjoining hills (J&K) and their conservation”. They reported 56 medicinally important plant species, parts of the plants used and their utility from the study area. According to the study the area is under the stress of many biotic actives like tourism, development, nomadism, and over exploitation of resources. Thus, there is an urgent need of application of sound conservation strategies and proper management practice to save these useful bio-resources of the area.

Beigh et al., (2004) while working on “Ethnobotany of Kashmir-studies on traditional veterinary medicine in Kashmir Himalayas J&K state” documented 25 plants and the use as veterinary medicine. Each plant species is discussed with family, local name and part used for the treatments. The information on the utilization of plants for curing common ailments of animals was obtained from knowledgeable persons and ethnic persons by filling a questionnaire.
Ejaz-ur-Rehman (2004) has reported the medicinal plants of district Kotli from Azad Jammu and Kashmir. He has carried out the field work of the area, and based on ethnic knowledge 66 plant species have been identified to be of medicinal value.

Sikarwar et al. (2004) while working on “Use of some important medicinal plants of Chitrakoot region of Satna M.P.” reported 28 plants utilized by tribal communities to alleviate their local ailments and diseases. Similarly Mudasir et al. (2009) conducted out the ethnomedical survey of Shopian Kashmir (J&K) and reported 20 medicinal plants belonging 14 different families.

A lot of work has been conducted in this decade in the field of ethno-botany and ethno-medicine by Singh and Shrivastava (2010) and Sharma et al. (2009 and 2010).

Asthma was first recognized in ancient Egypt and treatment was inhalation of frankincense. It is officially recognized as a specific respiratory problem separate from others and it was first recognized and named by Hippocrates circa 450 BC. During the 1930s–50s, asthma was considered as being one of the 'holy seven' psychosomatic illnesses. Its etiology was considered to be psychological, with treatment often based on
REVIEW OF LITERATURE

psychoanalysis and other 'talking cures'. As these psychoanalysts interpreted the asthmatic wheeze as the suppressed cry of the child for its mother, so they considered that the treatment of depression was especially important for individuals with asthma. One of the first papers discussing treatment of asthma was released in 1872; the author concluded in his paper that asthma can be cured by rubbing the chest with chloroform liniment Gaskoin (1872).

Herbs have been the highly esteemed source of medicine throughout human history. They are widely used today indicating that herbs are a growing part of modern, high-tech medicine. About 25-30 percent of today's prescription drugs contain chemical moieties derived from plants. The Indian System of Medicine i.e. Ayurveda along with classic texts like Bheshajya Ratnavali has a long-standing tradition that offers a unique insight into comprehensive approach to asthma management through proper care of the respiratory tract. Ayurvedic formulations used in the management of asthma, therefore, judiciously combine herbs to support the physiology of respiration. Several reports on the role of plants in the management of asthma have been published in National and International journals.
Klaewsongkram and Reantragoon (2009) analyzed the asthma research of Asia-Pacific countries using PUBMED database. Among the Asia-Pacific countries, Australia and Japan are the leading countries in contributing the highest research output on asthma. There was a drastic increase in the number of asthma publications and its quality from South Korea, Taiwan, Hong Kong and Singapore in the last decade. Although the publication output of China and India on asthma research has also increased during 1998-2007.

Ayurveda, an ancient system of Indian medicine has recommended a number of herbal drugs from indigenous plant sources for the treatment of bronchial asthma and allergic disorders (Charak Samhita., 1949). Norton (1954) has noticed that the compound 48/80 is responsible for the degranulation of mast cells and also reported an agent which causes histamine release.

Gupta et al. (1968) have proposed the development of anti-allergic and antihistaminic activity in relation to histamine releasing effects of a plant saponin from Clerodendron serratum on disruption of the mesenteric mast cells of rats. Rats were sensitized by injecting subcutaneously 0.5ml. of
horse serum along with 0.5 ml. of triple antigen containing 20,000 million of
Bordetella pertussis organisms.

Shivpuri et al., (1968) and Prakash et al., (1969) have also reported some beneficial effects of Tylophora indica in bronchial asthma. Marked protection in allergic subjects against inhalation challenges of specific antigen was reported after treatment with the alcoholic extract of Tylophora indica leaves (Shivpuri and Agarwal, 1971)

Gupta (1974) has made some observations on the anti-asthmatic affect of the saponin of Gardenia latifolia. Similarly, Sharma (1976) and Tripathi et al. (1978) have noticed that Albizzia lebbeck has been used in the Ayurvedic system of Indian medicine for more than 2000 years for the treatment of bronchial asthma.

Palit et al. (1983) also reported the anti asthmatic plant drugs from ancient Indian Ayurvedic Medicine and also noted dose depended antihistaminic effect of herbal drugs.

Sharma (1983) has reported that a dose of 500mg. of Tulsi extract when given thrice orally for one week to asthmatic patients relieved the breathlessness in patients along with the change in vital capacity of their
lungs. The plants such as *Rhus succedanea, Solanum xanthocarpum* and *Achyranthes aspera* are also used in the treatment of bronchial asthma as reported by Nadkarni (1992).

People with mast cell disorders respond to a wide range of triggers, which often includes environmental chemicals, foods, temperature changes, medicine, smells, stress, viruses and fungi, and on and on. This is not an IgE mediated response – the mast cells are trigger directly – although it can occur concurrently with IgE mediated allergies and disorders.

Gupta et al. (1994) isolated coleonol, a diterpene from *Coleus forskohlii* which shows significant anti-passive cutaneous anaphylaxis (PCA) and mast cell stabilizing activity.

Mitra et al. (1999) have evaluated antiasthmatic and anti anaphylactic activity of herbal formulation for 10 and 14 days, in guinea pigs and rats respectively, offered marked protection against anaphylactic shock-induced bronchospasm.

Torres et al. (2000) have noted the relaxant effect of a plant extract on vascular smooth muscles of the rat and Rojas et al., (2000) have also
reported a biologically active substance in plant *Piper memhysticum* which inhabits airways and smooth muscles contractaction.

Padamlatha et al. (2000) have reported the effect of polyherbal formulations (DLH-721A and DLH-721) on rat mesenteric mast cell degranulation and Jha (2001) have reported 19 plants of Chhota Nagpur, Jharkhand, India which are effective against asthma.

Saxena (2003) have presented a paper in the WOCMAP III, at Chiang Mai University and reported the smooth muscle relaxant activity of alcoholic extract of *Achyranthes aspera* against isolated Tracheal muscles of albino rats.

Vadnere et al. (2007) also have reported that *Clerodendron phlomidis* possess antihistaminic, mast cell stabilizing and decreased capillary permeability effect and hence possesses potential role in the treatment of asthma.

Ahirwar et al. (2008) evaluated anti-histaminic activity of the AVB-O1 by carrageen an-induced inflammation, formalin-induced peritonitis, clonidine-induced peritoneal mast cell degranulation and histamine-induced bronchospasm. The AVB-o1,a poly herbal formulation showed a
remarkable anti-inflammatory activity and significantly decreased the histamine contents in peritoneal fluids comparable to the standard drug. This study suggests that AVB-01 has anti-histaminic activity which can possibly be attributed to stabilization of mast cell membrane.

Kumar et al. (2008) analyzed that Herbex-kid (HK), a poly herbal formulation in various experimental allergic models. In active anaphylaxis model, male Wister rats orally administered with 10.75 and 107.5 mg kg\(^{-1}\) of HK showed significant (P < 0.01) protection against mast cell de-granulation, while in passive anaphylaxis model, only at 107.5 mg kg\(^{-1}\) showed significant (P < 0.01) reduction in mast cell de-granulation. It was finally observed from this study that HK possesses anti-allergic activity mediated by reducing of the release mediators from mast cells.

Efficacy and safety of seed kernel of *Moringa oleifera* in the treatment of bronchial asthma has been reported by Agarwal and Mehta (2008). Pandit et al. (2008) evaluated that the ethanolic extract of *Curculigo orchioides* for anti-asthmatic activity by using isolated goat tracheal chain preparation and isolated guinea pig ileum preparation. This study confirmed that ethanolic extract of *Curculigo orchioides* is effective
against histamine-induced contraction and the extract exhibits maximum relaxant effect in asthma.

Gupta et al. (2009) evaluated the antihistaminic activity of herbal extracts in sulphur dioxide induced cough model in mice. Similarly Patel et al. (2009) confirmed that purified saponin fraction of the extract of Glycyrrhiza glabra is effective in triple antigen sensitized albino rats as anti-asthmatic agent. The inhibition on mast cell de-granulation took place up to 62% at 25mg /kg body weight and finally it was concluded that this herbal medicine is effective against the asthma disease and in higher concentration, it is comparable with the standard drug Prednisolone.

Patel et al. (2009) also analyzed Ant anaphylactic activity of alcoholic extract of Eclipta alba and observed the rat mesenteric mast cell de-granulation from the alcoholic extract. This study also reported that the treatment with alcoholic extract of Eclipta alba have a dose dependent beneficial effect on de-granulation of mast cells in rats when challenged with compound 48/80. Similarly, Jayarama et al. (2010) carried out the study to ascertain anti asthmatic, analgesic and anti convulsing activities of the medicinal plant Bryonia laciniosa. The anti asthmatic activity was estimated by mesenteric mast cell count by Atopic allergy method. The results
indicated that 70% alcoholic extract of *Bryonia laciniosa* increased the anti-
asthmatic activity, analgesic activity and also anticonvulsant activity.

Kumar et al. (2010) reported that methanolic extract of stem barks of
Ailanthus excelsa possess anti-asthmatic activity by employing in-vivo and
in-vitro screening models in Guinea pigs.