Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Sources of nitrates</td>
<td></td>
</tr>
<tr>
<td>1.1.1. Natural sources</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2. Man made sources</td>
<td></td>
</tr>
<tr>
<td>1.1.2.1. Burning of Fossil Fuels</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2.2. Agricultural: Fertilizers and Animal Wastes</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2.3. Manure storage</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.4. Nitrification and Denitrification</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.5. Industries</td>
<td>5</td>
</tr>
<tr>
<td>1.2. Nitrites and human health</td>
<td>6</td>
</tr>
<tr>
<td>1.3. Toxicity of nitrate to animals</td>
<td>7</td>
</tr>
<tr>
<td>1.4. Methods used for nitrate removal</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1. Physico-chemical treatment</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2. Biological denitrification</td>
<td>8</td>
</tr>
<tr>
<td>1.5. What is denitrification?</td>
<td>9</td>
</tr>
<tr>
<td>1.6. Nitrate reducing processes in soil environment</td>
<td></td>
</tr>
<tr>
<td>1.6.1. Assimilatory Nitrate Reduction</td>
<td>11</td>
</tr>
<tr>
<td>1.6.2. Respiratory Denitrification</td>
<td>11</td>
</tr>
<tr>
<td>1.6.3. Dissimilatory Nitrate Reduction to Ammonium</td>
<td>12</td>
</tr>
<tr>
<td>1.6.4. Nitrate Respiration</td>
<td>13</td>
</tr>
<tr>
<td>1.6.5. Non-respiratory Denitrification</td>
<td>13</td>
</tr>
<tr>
<td>1.6.6. Chemodenitrification</td>
<td>13</td>
</tr>
<tr>
<td>1.7. Denitrifying bacteria</td>
<td>14</td>
</tr>
<tr>
<td>1.8. Physiology and biochemistry of respiratory denitrifiers</td>
<td>16</td>
</tr>
<tr>
<td>1.8.1. Nitrate reductase</td>
<td>18</td>
</tr>
<tr>
<td>1.8.2. Nitrite reductase</td>
<td>18</td>
</tr>
<tr>
<td>1.8.3. Nitric oxide reductase</td>
<td>19</td>
</tr>
<tr>
<td>1.8.4. Nitrous oxide reductase</td>
<td>20</td>
</tr>
<tr>
<td>1.9. Genetic basis of denitrification</td>
<td></td>
</tr>
<tr>
<td>1.9.1. Genome size of denitrifier</td>
<td>21</td>
</tr>
<tr>
<td>1.9.2. Regulation of denitrification</td>
<td>23</td>
</tr>
<tr>
<td>1.10. Factors controlling denitrification</td>
<td></td>
</tr>
<tr>
<td>1.10.1. Oxygen</td>
<td>24</td>
</tr>
<tr>
<td>1.10.2. Organic Carbon</td>
<td>24</td>
</tr>
<tr>
<td>1.10.3. Nitrogen Oxides</td>
<td>25</td>
</tr>
<tr>
<td>1.10.4. Hydrogen ions</td>
<td>26</td>
</tr>
<tr>
<td>1.10.5. Temperature</td>
<td>26</td>
</tr>
<tr>
<td>1.10.6. Inhibitors</td>
<td>27</td>
</tr>
<tr>
<td>1.11. Biological denitrification technologies:</td>
<td></td>
</tr>
<tr>
<td>1.11.1. Suspended growth technique</td>
<td>27</td>
</tr>
<tr>
<td>1.11.2. Attached growth</td>
<td>28</td>
</tr>
</tbody>
</table>
1.11.3. Immobilization ... 28
Outline of the problem ... 29
Present Investigation ... 30

2. Materials and methods ... 31
 2.1. Efficiency of denitrification in denitrifying reactor of GNFC (DNR) 31
 2.2. Enumeration of denitrifiers from DNR samples 31
 2.3. Composition of nitrate containing effluent of GNFC 31
 2.4. Analytical methods ... 32
 2.5. Isolation of denitrifiers ... 32
 2.5.1. Isolation of denitrifiers from DNR 32
 2.5.2. Isolation of denitrifiers from cow dung 32
 2.5.2.1. Composition of Molecular Hydrogen Nitrate Medium ... 33
 2.5.2.2. Composition of Nitrate agar medium 33
 2.5.3. Isolation of denitrifiers by column enrichment technique 33
 2.5.3.1. Static column ... 33
 2.5.3.2. Percolation column ... 34
 2.6. Confirmation of denitrifiers ... 34
 2.7. Effect of temperature on consortium of Pseudomonas stutzeri and
 Comamonas testosteroni ... 35
 2.8. Effect of different carbon sources on denitrification efficiency .. 37
 2.9. Effect of hydrogen ion concentration (pH) on denitrification
 efficiency of consortium .. 37
 2.10. Influence of dissolved oxygen on denitrification 37
 2.11. Yeast extract requirement for removal of nitrate from wastewater .. 38
 2.12. Inoculum optimization in batch experiment 38
 2.13. 4 and 50 l Bioreactor studies .. 38
 2.13.1. Calculation for specific denitrifying activity and denitrification
 efficiency (%) .. 39
 2.15. Cell immobilization procedure .. 40
 2.16. Immobilized and free cells denitrifying activity 40
 2.17. Beads stability .. 41
 2.18. Continuous operation of Bioreactor 41

3a. Isolation, Identification and characterization of denitrifying bacteria. 42
 3a.1. Efficiency of denitrification in denitrifying reactor (DNR) 44
 3a.2. Enumeration of denitrifiers from DNR samples 45
 3a.3. Isolation of denitrifiers ... 47
 3a.3.1. Isolates obtained from DNR samples 47
 3a.3.2. Isolates obtained from cow dung 47
 3a.3.3. Isolates obtained by enrichment techniques 48
 3a.3.3.1. Percolation Column .. 48
 3a.3.3.2. Static Column .. 49
 3a.4. Screening of denitrifiers .. 51
3a.5. Confirmation of denitrifiers ... 55
3a.6. Identification of isolates 1-4 and 1-5 60
3b. Optimization studies of denitrification process parameters 62
 3b.1. Effect of temperature on denitrification by consortium of
 Pseudomonas stutzeri and *Comamonas testosteroni* 62
 3b.2. Effect of different carbon sources on denitrification efficiency 64
 3b.3. Effect of hydrogen ion concentration (pH) on denitrification
 efficiency of consortium .. 67
 3b.4. Influence of dissolved oxygen on denitrification 69
 3b.5. Yeast extract requirement for removal of nitrate from wastewater .. 70
 3b.6. Inoculum optimization in batch experiment 72
4. Biotreatment of nitrate-rich effluent by suspended growth technique
 in 4 & 50 l bioreactor .. 73
 4.1. Nitrate removal by suspended growth technique in continuous 4-L
 Bioreactor ... 74
 4.1.1. Performance of the bioreactor at different HRTs (96h & 66h)
 with same COD:NO$_3^-$-N ratio (3.45) 75
 4.1.2. Performance of the bioreactor at lower COD:NO$_3^-$-N ratio(2.85) 77
 4.2. Scale-up of the system: Removal of nitrate in a continuous reactor at
 50 l ... 79
 4.2.1. Nitrate removal at flow rate 100h HRT (12 l d$^{-1}$) with
 COD:NO$_3^-$-N; 3.45 ... 82
 4.2.2. Denitrification efficiency at 66h HRT (flow rate 18 l d$^{-1}$) and
 50h HRT (24 l d$^{-1}$) with COD:NO$_3^-$-N;3.45 83
 4.2.3. Denitrification efficiency at retention time of 44h with
 COD:NO$_3^-$-N; 3.45 (flow rate 27 l d$^{-1}$) 87
 4.3. Effect of lower organic load (COD:NO$_3^-$-N;2.85) on denitrification
 with various flow rates (18 l d$^{-1}$ and 25 l d$^{-1}$) 88
5a. Optimizing growth and nitrate removal kinetics and process design
 parameters for suspended growth technique in a pilot scale reactor. 93
 5a.1. Process design considerations .. 93
 5a.2. Aerobic treatment studies in continuous reactor 94
 5a.3. Kinetics of biological denitrification, as applied in continuous
 complete-mix-no recycle system ... 96
 5a.4. Determination of kinetic coefficients for denitrification. 98
 5a.5. Optimization of different HRTs with 2.85 COD:NO$_3^-$-N ratio at 1.5
 m3 pilot reactor .. 99
 5a.6. Denitrification efficiency with different HRTs at 2.45 COD:NO$_3^-$-N
 Ratio .. 104
 5a.7. Comparative studies of pilot scale denitrifying reactor and DNR of
 GNFC
 5a.7.1. Comparison of volumetric COD and NO$_3^-$-N loading rates ... 109
 5a.7.2. Comparison of dissolved oxygen concentration and pH 110
 5a.7.3. Comparison of Volatile Suspended Solids (X$_{DN}$) 111