LIST OF SYMBOLS

- C_{pt}: heat capacity of particles, [JKg$^{-1}$ K$^{-1}$]
- C_s: heat capacity of the solid (porous matrix) material, [J/kgK]
- C_v: heat capacity of fluid at constant volume, [JKg$^{-1}$ K$^{-1}$]
- d: depth of layer, [m]
- e: charge of an electron
- F: dimensionless kinematic viscoelasticity
- g: acceleration due to gravity, [ms$^{-2}$]
- H: magnetic field, [G]
- Ω: rotation vector
- K: Stokes’ drag coefficient, [Kgs$^{-1}$]
- k: wave number, [m$^{-1}$]
- k_x, k_y: components of wave number k along x-axis, y-axis, [m$^{-1}$]
- k_1: medium permeability, [m2]
- M: Hall currents parameter
- m: mass of single particle, [g]
- n: growth rate, [s$^{-1}$]
- N: number density of suspended particle
- N': number density of an electron
- P_1: dimensionless medium permeability, [-]
- p_1: Prandtl number, [-]
- p_2: Magnetic Prandtl number, [-]
- Q: dimensionless Chandrasekhar number, [-]
- q': effective thermal conductivity of pure fluid, [Wm$^{-1}$K$^{-1}$]
- q: filter velocity, [ms$^{-1}$]
- q_d: suspended particle velocity
- R: Rayleigh number, [-]
\(R_i \) modified Rayleigh number
\(S \) analogous solute Rayleigh number
\(T_A \) Taylor number
\(T \) temperature, [K]
\(t \) time, [s]
\(x \) dimensionless wave number, [-]

Greek Letters

\(\alpha \) coefficient of thermal expansion, [K\(^{-1}\)]
\(\beta \) uniform temperature gradient, [K m\(^{-1}\)]
\(\varepsilon \) medium porosity, [-]
\(\eta \) electrical resistivity, [m\(^2\) s\(^{-1}\)]
\(\eta' \) suspended particle radius
\(\theta \) perturbation in temperature, [K]
\(\kappa \) thermal diffusivity, [m\(^2\) s\(^{-1}\)]
\(\mu \) dynamic viscosity [Kgm\(^{-1}\) s\(^{-1}\)]
\(\mu_e \) magnetic permeability, [H m\(^{-1}\)]
\(\nu \) kinematic viscosity, [m\(^2\) s\(^{-1}\)]
\(\nu' \) kinematic viscoelasticity, [m\(^2\) s\(^{-1}\)]
\(\rho \) density [Kg m\(^{-3}\)]
\(\zeta \) z-component of vorticity
\(\xi \) z-component of current density
\(\nabla \) del operator
\(\varsigma \) curly operator