The microwave energy is non-ionizing. It does not alter the molecular structure of the mixtures. It provides only thermal activation. The characterization of materials is significant activity in material science. The properties of materials depend not only on chemical composition and structural features but also on the degree of molecular order. Spectroscopy is one of the important tools to get information at molecular level. Dielectric spectroscopy is a branch of spectroscopy where one gets information about structural changes and molecular interaction through dielectric relaxation data.

In the present work, interaction of Carboxyl –C=O, Carboxylic-COOH, Amine –NH$_2$ and Cyanide C-N, which are the most common groups in Ayurvedic medicines (Asava and Arishtas) such as Ashwagandharishta, Saraswatarishta, Saptarishta, Drakshasava (Special), Tej-Ras and Abhayarishta with Hydroxyl –OH group in Ethanol, Methanol and Acetone at 15 $^\circ$C, 25 $^\circ$C, 35 $^\circ$C and 45 $^\circ$C is studied. The basics of molecular interaction are the hydrogen bonding. Hydrogen bonds occur between hydrogen containing dipoles and electronegative element. Electro-negativity provides us a relative ability of atom in molecule to attract bonding electrons.

Time Domain Spectroscopy developed by Prof. Cole in reflection mode is used for obtaining dielectric relaxation data. This technique is very useful, economic and fast as compared to other techniques. TDR technique requires very small amount of sample and in single measurement we get permittivity and dielectric loss over wide range from range 10MHz to 20 GHz.

The basic TDR setup consists of step generator, sampling head, sample cell and broadband storage oscilloscope. A fast rising step pulse from generator propagates through coaxial transmission line and reaches dielectric sample placed in sample cell connected as open-ended load. It is partly transmitted and partly reflected at air dielectric interface. Both, reflected as well as transmitted step pulse from sample contains information about dielectric behavior of sample. In the present work reflected step is used to evaluate dielectric relaxation data. The time profile of reflected step with and without sample is recorded in the oscilloscope. This time domain data is
transformed into frequency domain data using Fourier transformation. Frequency domain data is used to obtain complex reflection coefficient \(\rho^*(\omega) \) over frequency range of 10 MHz to 20 GHz. Complex reflection Coefficient gives permittivity and dielectric loss in selected frequency range. But normally there occurs error in this data at higher frequencies due to fringing field, multiple reflections or due to quarter-wave resonance in case of high lossy liquids. The complex reflection data is called “RAW” data. An error in RAW data is corrected by bilinear calibration process. The corrected data is called “COR” data. The dielectric parameters of the Ayurvedic Medicines obtained by fitting “COR” data to Havriliak-Negami equation,

\[
\varepsilon^*(\omega) = \varepsilon_\infty + \frac{\varepsilon_0 - \varepsilon_\infty}{1 + (j\omega\tau)^{-\alpha}} + \frac{\varepsilon_\infty - \varepsilon_0}{1 + (j\omega\tau)^{-\beta}}
\]

Where \(\varepsilon^*(\omega) \) is complex reflection coefficient, \(\varepsilon_0 \) is static permittivity, \(\varepsilon_\infty \) is dielectric loss, \(\omega \) is angular frequency, \(\tau \) is relaxation time, \(\alpha \) is relaxation time distribution parameter defined in Cole-Cole model, \(\beta \) is relaxation time distribution parameter defined in Davison-Cole model. If we put \(\alpha = 0 \) and \(\beta = 1 \), above equation represents simple Debye model. A least squares fit method is used to obtain dielectric parameters.

The permittivity (\(\varepsilon \)) is related to square of molecular dipole moment; the value of permittivity (\(\varepsilon \)) is related to size of molecule in solution and temperature. The dielectric relaxation time \(\tau \) of biological material is related to nature of intermolecular bonding, size of molecule, mobility of molecules in solution, molecular volume, viscosity and temperature. Thus information at molecular level can be gained from a study of dielectric behavior. To understand structural changes in systems Excess permittivity (\(\varepsilon^E \)), Excess inverse relaxation time \((1/\tau^E) \) and Bruggeman factor \((f_B) \) are obtained. Thermodynamic parameters i.e. activation energy in kg/mole, change in enthalpy (\(\Delta H \)) and entropy (\(\Delta S \)) are calculated using Eyring’s equation to understand molecular dynamics of the system.
LIST OF FIGURES

CHAPTER I: AYURVEDA
 Fig 1.1 Physical parameters and Molecular structure of Ethanol.
 Fig 1.2 Physical parameters and Molecular structure of water.
 Fig 1.3 Physical parameters and Molecular structure of Methanol.
 Fig 1.4 Physical parameters and Molecular structure of Acetone.

CHAPTER III: THEORIES OF DIELECTRICS
 Fig 3.1 Variation of ε and ε' with frequency in GHz.
 Fig 3.2 Debye Semicircle.

CHAPTER IV: EXPERIMENTAL TECHNIQUE
 Fig 4.1 Photograph of the actual experimental setup.
 Fig 4.2 Schematic Diagram of Experimental setup of TDR.
 Fig 4.3 Geometrical construction of SMA cell.
 Fig 4.4 Fringing field and SMA dimension.
 Fig 4.5 Constant temperature bath.
 Fig 4.6 Equivalent circuit for transmission line.
 Fig 4.7 Step pulse reflection response from load.
 Fig 4.8 Reflection of step pulse from different purely resistive loads.
 Fig 4.9 Reflection of step pulse from different complex loads.
 Fig 4.10 Block diagram of Dual channel TDR unit.
 Fig 4.11 Reflection of step pulse without sample $R_1(t)$ and with sample $R_x(t)$.
 Fig 4.12 Subtracted pulse $p(t)$ and added pulse $q(t)$.
 Fig 4.13 Reflection coefficient spectrum (raw) for Ashwagandharishta at 25^0C.
 Fig 4.14 Complex permittivity spectrum (cor) for Ashwagandharishta at 25^0C.
 Fig 4.15 Determination of effective pin length.

CHAPTER V: DIELECTRIC STUDY OF ASAVA AND ARISHTAS WITH ETHANOL
 Fig 5.1A: Corrected Data for Ashwagandharishta + Ethanol mixture of various concentration 25^0C.
 Fig 5.1B: Cole-Cole plot for Ashwagandharishta + Ethanol at 25^0C.
 Fig 5.1C: Variation of Permittivity (ε_o) with volume fraction of Ashwagandharishta in Ethanol at various temperatures.
 Fig 5.1D: Variation of Relaxation time(τ) with volume fraction of Ashwagandharishta in Ethanol at various temperatures.
 Fig 5.1E: Variation of Excess Permittivity (ε^E) with mole fraction of Ashwagandharishta in Ethanol at various temperatures.
 Fig 5.1F: Variation of Excess Inverse Relaxation Time $(1/\tau)^E$ with mole fraction of Ethanol in Ashwagandharishta at various temperatures.
 Fig 5.1G: Variation of Bruggeman factor (f_B) with volume fraction of Ashwagandharishta in Ethanol at 25^0C.
 Fig 5.1H: Arrhenius plot of Ashwagandharishta + Ethanol mixture.
Fig 5.1I: Variation of Enthalpy for Ashwagandharishta + Ethanol mixture.

Fig 5.1J: Variation of Free energy of activation for Ashwagandharishta + Ethanol mixture.

Fig 5.1K: Variation of Conductivity for Ashwagandharishta + Ethanol mixture.

Fig 5.2A: Corrected data for Saraswatarishta + Ethanol at 25 °C.

Fig 5.2B: Cole-Cole plot for Saraswatarishta + Ethanol at 25 °C.

Fig 5.2C: Variation of Permittivity (ε_0) with volume fraction of Saraswatarishta in Ethanol at various temperatures.

Fig 5.2D: Variation of Relaxation Time (τ) with volume fraction of Saraswatarishta in Ethanol at various temperatures.

Fig 5.2E: Variation of Excess Permittivity (ε^E) with mole fraction of Ethanol in Saraswatarishta at temperatures.

Fig 5.2F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Ethanol in Saraswatarishta at various temp.

Fig 5.2G: Variation of Bruggeman factor (f_B) with volume fraction of Saraswatarishta in Ethanol at 25 °C.

Fig 5.2H: Arrhenius plot of Saraswatarishta + Ethanol mixture.

Fig 5.2I: Variation of Enthalpy for Saraswatarishta + Ethanol mixture.

Fig 5.2J: Variation of Free energy of activation for Saraswatarishta + Ethanol.

Fig 5.2K: Variation of Conductivity for Saraswatarishta + Ethanol.

Fig 5.3A: Corrected data for Saptarishta + Ethanol mixture at 25 °C.

Fig 5.3B: Cole-Cole plot for Saptarishta + Ethanol at 25 °C.

Fig 5.3C: Variation of Permittivity (ε_0) with volume fraction of Saptarishta in Ethanol at various temperature.

Fig 5.3D: Variation of Relaxation Time (τ) with volume fraction of Saptarishta in Ethanol at various temperatures.

Fig 5.3E: Variation of Excess Permittivity (ε^E) with mole fraction of Ethanol in Saptarishta at temperatures.

Fig 5.3F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Ethanol in Saptarishta at various temperatures.

Fig 5.3G: Variation of Bruggeman factor (f_B) with volume fraction of Saptarishta in Ethanol at 25 °C.

Fig 5.3H: Arrhenius plot of Saptarishta + Ethanol mixture.

Fig 5.3I: Variation of Enthalpy for Saptarishta + Ethanol mixture.

Fig 5.3J: Variation of Free energy of activation for Saptarishta + Ethanol.

Fig 5.3K: Variation of Conductivity for Saptarishta + Ethanol mixture.

Fig 5.4A: Corrected data for Drakshasava (Spl.) + Ethanol at 25 °C.

Fig 5.4B: Cole-Cole plot for Drakshasava (Spl.) + Ethanol at 25 °C.

Fig 5.4C: Variation of Permittivity (ε_0) with volume fraction of Drakshasava in Ethanol at various temperature.

Fig 5.4D: Variation of Relaxation Time (τ) with volume fraction of Drakshasava (Spl.) in Ethanol at various temperatures.

Fig 5.4E: Variation of Excess Permittivity (ε^E) with mole fraction of Drakshasava (Spl.) Ethanol at temperatures.

Fig 5.4F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole...
fraction of Drakshasava (Spl.) in Ethanol at various temperatures.

Fig 5.4G: Variation of Bruggeman factor \(f_B\) with volume fraction of Drakshasava (Spl.) in Ethanol at 25 \(^0\)C.

Fig 5.4H: Arrhenius plot of Drakshasava (Spl.) + Ethanol mixture.

Fig 5.4I: Variation of Enthalpy for Drakshasava (Spl.) + Ethanol.

Fig 5.4J: Variation of Free energy of activation for Drakshasava (Spl.) + Ethanol.

Fig 5.4K: Variation of Conductivity for Drakshasava (Spl.) + Ethanol mixture.

Fig 5.5A: Corrected data for Tej-Ras + Ethanol mixture at 25 \(^0\)C.

Fig 5.5B: Cole-Cole plot for Tej-Ras + Ethanol at 25 \(^0\)C.

Fig 5.5C: Variation of Permittivity \(\varepsilon_\infty\) with volume fraction of Tej-Ras in Ethanol at various temperature.

Fig.5.5D: Variation of Relaxation Time \((\tau)\) with volume fraction of Tej-Ras in Ethanol at various temperatures.

Fig 5.5E: Variation of Excess Permittivity \(\varepsilon^E\) with mole fraction of Ethanol in Tej-Ras at temperatures.

Fig 5.5F: Variation of Excess Inverse Relaxation Time \((1/\tau)^E\) with mole fraction of Ethanol in Tej-Ras at various temperatures.

Fig 5.5G: Variation of Bruggeman factor \(f_B\) with volume fraction of Tej-Ras in Ethanol at 25 \(^0\)C.

Fig 5.5H: Arrhenius plot of Tej-Ras + Ethanol mixture.

Fig 5.5I: Variation of Enthalpy for Saraswatarishta + Ethanol mixture.

Fig 5.5J: Variation of Free energy of activation for Tej-Ras + Ethanol.

Fig 5.5K: Variation of Conductivity for Tej-Ras + Ethanol mixture.

Fig 5.6A: Corrected data for Abhayarishta + Ethanol mixture of various concentration 25 \(^0\)C.

Fig 5.6B: Cole-Cole plot for Abhayarishta + Ethanol at 25 \(^0\)C.

Fig 5.6C: Variation of Permittivity \(\varepsilon_\infty\) with volume fraction of Abhayarishta in Ethanol at various temperatures.

Fig 5.6D: Variation of Relaxation Time \((\tau)\) with volume fraction of Abhayarishta in Ethanol at various temperatures.

Fig 5.6E: Variation of Excess Permittivity \(\varepsilon^E\) with mole fraction of Ethanol in Abhayarishta at temperatures.

Fig 5.6F: Variation of Excess Inverse Relaxation Time \((1/\tau)^E\) with mole fraction of Ethanol in Abhayarishta at various temperatures.

Fig 5.3G: Variation of Bruggeman factor \(f_B\) with volume fraction of Abhayarishta in Ethanol at 25 \(^0\)C.

Fig 5.6H: Arrhenius plot of Abhayarishta + Ethanol mixture.

Fig 5.6I: Variation of Enthalpy for Abhayarishta + Ethanol mixture.

Fig 5.6J: Variation of Free energy of activation for Abhayarishta + Ethanol.

Fig 5.6K: Variation of Conductivity for Abhayarishta + Ethanol mixture.

CHAPTER VI: DIELECTRIC STUDY OF ASAVA AND ARISHTAS WITH METHANOL AND ACETONE

Fig 6.1A: Corrected Data for Ashwagandharishta + Methanol mixture of various concentration 25 \(^0\)C.

Fig 6.1B: Cole-Cole plot for Ashwagandharishta + Methanol at 25 \(^0\)C.
Fig. 6.1C: Variation of Permittivity (ε_0) with volume fraction of Ashwagandharishta in Methanol at various temperatures.

Fig. 6.1D: Variation of Relaxation time(τ) with volume fraction of Ashwagandharishta in Methanol at various temperatures.

Fig. 6.1E: Variation of Excess Permittivity (ε^E) with mole fraction of Ashwagandharishta in Methanol at various temperatures.

Fig. 6.1F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Methanol in Ashwagandharishta at various temperatures.

Fig. 6.1G: Variation of Bruggeman factor (f_B) with volume fraction of Ashwagandharishta in Methanol at 25 $^\circ$C.

Fig. 6.1H: Arrhenius plot of Ashwagandharishta + Methanol mixture.

Fig. 6.1I: Variation of Enthalpy for Ashwagandharishta + Methanol mixture.

Fig. 6.1J: Variation of Free energy of activation for Ashwagandharishta + Methanol mixture.

Fig. 6.1K: Variation of Conductivity for Ashwagandharishta + Methanol.

Fig. 6.2A: Corrected data for Saraswatarishta + Methanol at 25 $^\circ$C.

Fig. 6.2B: Cole-Cole plot for Saraswatarishta + Methanol at 25 $^\circ$C.

Fig. 6.2C: Variation of Permittivity (ε_0) with volume fraction of Saraswatarishta in Methanol at various temperatures.

Fig. 6.2D: Variation of Relaxation Time (τ) with volume fraction of Saraswatarishta in Methanol at various temperatures.

Fig. 6.2E: Variation of Excess Permittivity (ε^E) with mole fraction of Methanol in Saraswatarishta at temperatures.

Fig. 6.2F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Methanol in Saraswatarishta at various temperatures.

Fig. 6.2G: Variation of Bruggeman factor (f_B) with volume fraction of Saraswatarishta in Methanol at 25 $^\circ$C.

Fig. 6.2H: Arrhenius plot of Saraswatarishta + Methanol mixture.

Fig. 6.2I: Variation of Enthalpy for Saraswatarishta + Methanol mixture.

Fig. 6.2J: Variation of Free energy of activation for Saraswatarishta + Methanol.

Fig. 6.2K: Variation of Conductivity for Saraswatarishta + Methanol mixture.

Fig. 6.3A: Corrected data for Drakshasava (Spl.) + Methanol at 25 $^\circ$C.

Fig. 6.3B: Cole-Cole plot for Drakshasava (Spl.) + Methanol at 25 $^\circ$C.

Fig. 6.3C: Variation of Permittivity (ε_0) with volume fraction of Drakshasava in Methanol at various temperatures.

Fig. 6.3D: Variation of Relaxation Time (τ) with volume fraction of Drakshasava (Spl.) in Ethanol at various temperatures.

Fig. 6.3E: Variation of Excess Permittivity (ε^E) with mole fraction of Drakshasava (Spl.) Ethanol at Temperatures.

Fig. 6.3F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Drakshasava (Spl.) in Ethanol at various temperatures.

Fig. 6.3G: Variation of Bruggeman factor (f_B) with volume fraction of Drakshasava (Spl.) in Methanol at 25 $^\circ$C.
Fig 6.3H: Arrhenius plot of Drakshasava (Spl.) + Methanol mixture.
Fig 6.3I: Variation of Enthalpy for Drakshasava (Spl.) + Methanol mixture.
Fig 6.3J: Variation of Free energy of activation for Drakshasava + Methanol.
Fig 6.3K: Variation of Conductivity for Drakshasava (Spl.) + Methanol mixture.
Fig 6.4A: Corrected data for Tej-Ras + Methanol mixture at 25 °C.
Fig 6.4B: Cole-Cole plot for Tej-Ras + Methanol at 25 °C.
Fig 6.4C: Variation of Permittivity (ε_o) with volume fraction of Tej-Ras in Methanol at various temperature.
Fig 6.4D: Variation of Relaxation Time (τ) with volume fraction of Tej-Ras in Methanol at various temperatures.
Fig 6.4E: Variation of Excess Permittivity (ε^E) with mole fraction of Methanol in Tej-Ras at temperatures.
Fig 6.4F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Methanol in Tej-Ras at various temperatures.
Fig 6.4G: Variation of Bruggeman factor (f_B) with volume fraction of Tej-Ras in Methanol at 25 °C.
Fig 6.4H: Arrhenius plot of Tej-Ras + Methanol mixture.
Fig 6.4I: Variation of Enthalpy for Tej-Ras + Methanol mixture.
Fig 6.4J: Variation of Free energy of activation for Tej-Ras + Methanol.
Fig 6.4K: Variation of Conductivity for Tej-Ras + Methanol mixture.
Fig 6.5A: Corrected Data for Ashwagandharishta + Acetone mixture of various concentration 25 °C.
Fig 6.5B: Cole-Cole plot for Ashwagandharishta + Acetone at 25 °C.
Fig 6.5C: Variation of Permittivity (ε_o) with volume fraction of Ashwagandharishta in Acetone at various temperatures.
Fig 6.5D: Variation of Relaxation time(τ) with volume fraction of Ashwagandharishta in Acetone at various temperatures.
Fig 6.5E: Variation of Excess Permittivity (ε^E) with mole fraction of Ashwagandharishta in Acetone at various temperatures.
Fig 6.5F: Variation of Excess Inverse Relaxation Time ($1/\tau^E$) with mole fraction of Acetone in Ashwagandharishta at various temp.
Fig 6.5G: Variation of Bruggeman factor (f_B) with volume fraction of Ashwagandharishta in Acetone at 25 °C.
Fig 6.5H: Arrhenius plot of Ashwagandharishta + Acetone mixture.
Fig 6.5I: Variation of Enthalpy for Ashwagandharishta + Acetone mixture.
Fig 6.5J: Variation of Free energy of activation for Ashwagandharishta + Acetone mixture.
Fig 6.5K: Variation of Conductivity for Ashwagandharishta + Acetone.
CHAPTER V: DIELECTRIC STUDY OF ASAVA AND ARISHTAS WITH ETHANOL

Table 5.1A: Temperature dependent dielectric parameters of Ashwagandharishta + Ethanol mixture.
Table 5.1B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Ashwagandharishta + Ethanol mixture.
Table 5.1C: Activation Enthalpy and Entropy of Ashwagandharishta + Ethanol mixture.
Table 5.2A: Temperature dependent dielectric parameters of Saraswatarishta + Ethanol mixture.
Table 5.2B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Saraswatarishta + Ethanol mixture.
Table 5.2C: Activation Enthalpy and Entropy of Saraswatarishta + Ethanol mixture.
Table 5.3A: Temperature dependent dielectric parameters of Saptarishta + Ethanol mixture.
Table 5.3B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Saptarishta + Ethanol mixture.
Table 5.3C: Activation Enthalpy and Entropy of Saptarishta + Ethanol mixture.
Table 5.4A: Temperature dependent dielectric parameters of Drakshasava Special + Ethanol mixture.
Table 5.4B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Drakshasava Special + Ethanol mixture.
Table 5.4C: Activation Enthalpy and Entropy of Drakshasava Special + Ethanol mixture.
Table 5.5A: Temperature dependent dielectric parameters of Tej-Ras + Ethanol mixture.

Table 5.5B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Tej-Ras + Ethanol mixture.

Table 5.5C: Activation Enthalpy and Entropy of Tej-Ras + Ethanol mixture.

Table 5.6A: Temperature dependent dielectric parameters of Abhayarishta + Ethanol mixture.

Table 5.6B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Abhayarishta + Ethanol mixture.

Table 5.6C: Activation Enthalpy and Entropy of Abhayarishta + Ethanol mixture.

CHAPTER VI: DIELECTRIC STUDY OF ASAVA AND ARISHTAS WITH METHANOL AND ACETONE

Table 5.1A: Temperature dependent dielectric parameters of Ashwagandharishta + Methanol mixture.

Table 5.1B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Ashwagandharishta + Methanol mixture.

Table 5.1C: Activation Enthalpy and Entropy of Ashwagandharishta + Methanol mixture.

Table 5.2A: Temperature dependent dielectric parameters of Saraswatarishta + Methanol mixture.

Table 5.2B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Saraswatarishta + Methanol mixture.

Table 5.2C: Activation Enthalpy and Entropy of Saraswatarishta + Methanol mixture.

Table 5.4A: Temperature dependent dielectric parameters of Drakshasava Special + Methanol mixture.

Table 5.4B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Drakshasava Special + Methanol mixture.

Table 5.4C: Activation Enthalpy and Entropy of Drakshasava Special + Methanol mixture.
Methanol mixture.

Table 5.5A: Temperature dependent dielectric parameters of Tej-Ras + Methanol mixture.

Table 5.5B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Tej-Ras + Methanol mixture.

Table 5.5C: Activation Enthalpy and Entropy of Tej-Ras + Methanol mixture.

Table 5.1A: Temperature dependent dielectric parameters of Ashwagandharishta + Acetone mixture.

Table 5.1B: Ideal, experimental and theoretical values of Bruggeman factor (f_B) for Ashwagandharishta + Acetone mixture.

Table 5.1C: Activation Enthalpy and Entropy of Ashwagandharishta + Acetone mixture.

CHAPTER VII: CONCLUSION

Fig 7.1A: Summary of results of Ashwagandharishta + Ethanol, Saraswatarishta + Ethanol and Saptarishta Ethanol mixtures.

Fig 7.2A: Summary of results of Drakshasava + Ethanol, Tej-Ras + Ethanol and Abhayarishta + Ethanol mixtures.

Fig 7.3A: Summary of results of Ashwagandharishta + Methanol, Saraswatarishta + Methanol and Drakshasava + Methanol mixtures.

Fig 7. A: Summary of results of Tej-Ras + Methanol, Ashwagandharishta + Acetone mixtures.