Chapter 1

INTRODUCTION

1.1 SIGNIFICANCE OF PIPELINE TRANSPORTATION OF SOLIDS

Pipeline transportation - using either hydraulic or pneumatic system - is now considered to be an appropriate alternative to the conventional bulk material handling systems. Hydraulic conveying of solid materials through pipes has progressed enormously since its beginning well over a century. Millions of tons of coal and mineral ores are transported every year over hundreds of kilometres. It is uniquely preferred in dredging operations. In coal industry hydraulic systems are used during mining, transport, combustion and also for marine transport. Hydraulic handling techniques for ash disposal from coal-fired power plants and furnaces are currently being used worldwide. In chemical and mineral processing industries, conveying of particulate solids consisting of solid material dispersed in a liquid medium is involved.

In an important and extensive study led by Zandi [145], the team reported their findings on the application of freight pipelines and concluded that, most varieties of freight pipelines are technologically feasible modes of transport for pulverized materials.
1.2 IMPORTANT FEATURES OF FREIGHT PIPELINES

A freight pipeline system has many good features besides being attractive from an environmental point of view. Some of the features are:

- Traffic reduction,
- Air pollution reduction,
- Accident reduction,
- Less land disturbance while laying pipeline than other modes of transportation like laying Railway line for Rail Transport,
- Reduction in energy consumption when compared to Railways or Roadways etc.,
- Potential for complete automation right from the place of the origin to destination, and
- Reduction of freight loss and damage.

A freight pipeline has some limitations:

- Highways and railroads carry traffic other than freight, whereas pipeline transport is limited to transportation of pulverized material only.
- Water is commonly used in slurry pipelines as the conveying liquid. When it is scarce at the point of origin of the freight slurry, the pipeline can make the situation even more acute.

The pumping unit is an essential part of a hydraulic transportation system. It feeds the pipeline and provides the necessary energy for the transportation.
1.3 THE PUMPING UNIT

In practice, pumps of various kinds such as centrifugal pumps, positive displacement pumps, and jet pumps are used for different purposes. The selection of a pump is generally based on the head and discharge requirements.

1.4 CLASSIFICATION OF PUMPS

Pumps are classified in many ways. Krutzsch [52] classified them into two groups - (i) Dynamic Pumps and (ii) Displacement Pumps (Figs. 1.1 & 1.2) based on the principle by which the energy is imparted to fluid or slurry.

Although the centrifugal and positive displacement pumps are more efficient than jet pumps and air lift pumps, an increase in concentration even by 1% of solids would deteriorate the performance of these pumps. The centrifugal and positive displacement pumps besides being costly need special maintenance when they are put to use in submerged environments. Therefore, due to simplicity in construction, light weight, absence of moving parts, valves and less maintenance, the jet pumps are found to be a better alternative for hydraulic transportation of materials.
Fig. 1.1 Classification of Dynamic Pumps (Krutzsch [52])
Fig. 1.2 Classification of **Displacement Pumps** (Krutzsch [52])
Fig. 1.3 Classification of Jet pumps
1.5 CLASSIFICATION OF JET PUMPS

Of all the different types of pumps, jet-pumps form a special class and the classification of it is summarized and presented in Fig. 1.3.

1.6 WORKING PRINCIPLE OF TWO TYPICAL JET PUMPS

1.6.1 Air-Lift Pump

The Air-lift pump is a very simple device as could be seen through line sketch in Fig.1.4(A) having merely a vertical pipe (the riser) immersed in a pool of liquid. Gas (usually air) is injected via an orifice system from the bottom or from the side of the riser. Three typical ways of injections are shown in Fig. 1.4 (A, B, C). Due to the buoyancy force of air bubbles, they lift the liquid. Although the efficiency of a gas-lift pump is low, its simplicity and absence of moving parts make it attractive as a means of lifting corrosive and toxic liquids. At times airlift pump is used to lift solid particles also.

Fig. 1.4 various air injection methods
1.6.2 Jet-Lift Pump

Jet lift pump is a pump having no moving parts and utilizes fluids in motion under controlled conditions as shown in Fig. 1.5(A). A high-pressure stream of fluid directed through a nozzle(s) provides the motive power. Four typical ways to inject the driving fluid are also shown in the same Fig. 1.5(A, B, C & D).

Fig. 1.5 Line sketches of some typical jet pumps
The resultant jet of high velocity fluid creates a low-pressure area at the entrance of mixing chamber (throat) causing the suction liquid to flow into this chamber. There is an exchange of momentum at this point producing a uniformly mixed stream travelling at a velocity intermediate to the motive and suction velocities. Jet nozzle converts the pressure energy into velocity, while the throat and diffuser mix the fluids and convert velocity back into pressure energy. Jet pumps are usually tailor-made to suit the conditions of service.

1.7 DIVERSE APPLICATIONS OF JET PUMPS

Three diversified applications of Jet-Pumps in different industries are described below:

1.7.1 Coal Unloading from a Sea Vessel

Fig 1.6 depicts coal unloading from a sea vessel [78].
1.7.2 Mining

Some of the applications of jet pumps in the mining industry are as follows:

- Lifting of drill cuttings in pulverized form and / or water at shaft deepening,
- Conveying hydraulically winnowed materials in underground mining,
- Extraction of materials from under-water deposits, and
- Removing of mud from settling sumps of draining plants in mines.

1.7.3 Dredging

Wakefield [133] designed and successfully implemented (Figs. 1.7 and 1.8) jet pumps for *beach and sand bar management*. It was the world's first fixed *Sand Bypassing System*, and was implemented at the Nearing River mouth, Surfers' Paradise, Queensland, Australia. A line of 10 jet pumps was arranged at right angles to the direction of the littoral drift.

Without the sand bar management system in place, the mouth of the Nerang river (Queensland, Australia) was expected to move northward and by the year 2050 it is expected to be north of Runaway Bay as shown in Fig. 1.9.

The pumps were suspended from a jetty and each jet pump was spaced about 30m apart. The jet pumps were lowered to a depth of 10 metres below the normal sea-bed. Their operation created a trench of sand trap at right angles to the beach. The sand moving from the South gathered in the trench and was pumped through a pipeline under the
entrance to the Northern beach. The system has a capacity to pump sand at rates of either 335 or 585 cubic metres per hour.

Further, Wakefield suggested the hybridisation of jet pump and centrifugal pump to have advantages of both the pumps. Sometimes two jet pumps may be combined in series (multi-stage), the first one pressurizing the second to suppress cavitation and greater secondary flow.

Fig. 1.7 Nerang river entrance – general arrangement
Fig. 1.8 Schematic diagram of sand bypassing system
Fig. 1.9 Movement of the Nerang River mouth over the years
1.7.4 Deep Sea Mining

All over the globe, the Ocean beds are littered with huge quantities of poly-metallic nodules. The nodule resources on the sea floor amount to approximately 1 to 5 times the land resources. It is estimated that, it takes from 2 to 3 million years for a nodule to grow to a nominal dimension of 2 to 3 cm in equivalent diameter (Vega [130]). Unlike fossil resources, they are renewable. About 10 million tonnes of nodules form every year (Qasim [97]). Research is going on all over the world for deep ocean mining of Manganese nodules. Several lifting systems have been considered. Of them, the air-lift and jet-lift pumps are considered to have good potential for deep-sea mining applications. It is quite natural for a country like India to tap such valuable resources for its own benefit.

![Fig. 1.10 Schematic diagram of extraction of minerals from sea-bed](image)
The Indian Initiative:

The first discovery of polymetallic nodules was made by scientists onboard the research vessel "H M S Challenger" during 1873. In comparison, India (by the efforts of the National Institute of Oceanography, Goa) recovered nodules in the Arabian Sea during 1981 onboard "R.V.Gaveshani." In 1982, India was recognised as a Pioneer Investor in deep seabed mining by the United Nations Convention on the Law of Sea.

Subsequently, a massive effort was put in by India for exploration of polymetallic nodules in the Central Indian Ocean Basin (CIOB) by using number of research vessels. This national programme (running into crores of rupees) is being funded by the Department of Ocean Development, New Delhi.

One of the mine site of 150,000 sq km has been allotted to India and as per the condition of the ISBA, 50% of the area has been relinquished to this body.

Deep-sea Technologies & Ocean Mining Group of National Institute of Ocean Technology, Chennai, aims at developing a highly reliable Deep-sea mining system which will develop technologies for harnessing resources from ocean to meet the country’s growing mineral requirements and increase the country’s self sufficiency.
There are three methods – (i) hydraulic lift system, (ii) continuous line bucket mining system and (iii) modular or shuttle mining system used to mine nodules from the deep sea. Looking into various reports, hydraulic mining system, which uses the principles of hydraulics in lifting the nodules to the surface, appears to be the best alternative. The transfer of nodules to transport ships could be achieved by one of the two modes – slurry transfer or conveyor transfer.

Some other applications of Jet-Pumps could be summarized below:

1.7.5 Applications of Liquid-Liquid Jet Pumps

- Chemical plant circulating systems,
- Oil well pumping,
- Aircraft fuel pumping,
- Boiling Water Re-circulation (BWR) pumps in nuclear reactors,
- As a priming device, and

It is worth noting the advantages and disadvantages of Jet-Pumps.

1.8 ADVANTAGES AND DISADVANTAGES

1.8.1 Advantages of Jet Pumps over Conventional Slurry Pumps:
- Simple in construction
- No moving parts
- Worn parts can be easily and inexpensively replaced
- No valves
- Reliable operation and low maintenance costs
- The motive pump handles only clear water and may be kept away from jet pump

1.8.2 Disadvantages:
- Slurry concentration cannot be controlled at a constant level,
- Cannot pump over longer distances unlike centrifugal pumps,
- Air-jets or liquid-jets are required to form homogeneous slurry,
- The pumps are to be tailor-made for different situations.

Several parameters are involved in hydraulic conveying systems, which are briefly reported below:
1.9 PARAMETERS INVOLVED

Important parameters of hydraulic conveying system which affect the performance are summarised under the following six subsections.

1. Pipe Related (Geometrical Parameters)
 i) Pipe diameter
 ii) Pipe surface roughness
 iii) Pipe Inclination
 iv) Orientation
 v) Pipe coating

2. Conveying Media Properties
 i) Density
 ii) Velocity
 iii) Pressure
 iv) Temperature
 v) Viscosity

3. Properties of Material to be conveyed
 (a) Geometrical properties
 i) Particle size distribution
 ii) Shape (sphericity)
 iii) Surface characteristics
 (b) Material physical properties
 i) Density
 ii) Type of material
 iii) Coefficient of restitution for impact between particles
 iv) Coefficient of friction between particles
 (c) Pipe and Material Conveyed
i) Coefficient of restitution for impact between particle and the pipe wall
ii) Coefficient of friction between particle and the pipe wall

(d) **Pipe and Conveying media - friction factor**

(e) **Particle velocity**

(f) **Material flow rate**

4. **Conveying Media and Material Conveyed**

 i) Drag coefficient

5. **Pipe, Conveying Media and Material Conveyed:**

 ii) Mixture ratio

 iii) Diffusion Coefficient.

6. **Jet Pump Parameters:**

 i) Primary nozzle - inner diameter,

 ii) Surface roughness,

 iii) \((s/d_t)\) - the ratio of the distance between the nozzle and the throat entrance to the diameter of the throat,

 iv) Area ratio \((R)\) - ratio of area of the nozzle to the area of the throat,

 v) Length and diameter of the throat, and

 vi) Diffuser included angle.

1.10 **MOTIVATION FOR THE PRESENT STUDY**

In spite of several researchers having done extremely useful work in the area of two-phase flow, only a little work has been done systematically in flow through jet pumps. Wakefield’s Sand Bypassing System on the Nerang River being a commercial and patented
experimental data on parametric study was not published. From the extensive literature survey made by the present investigation, it was observed that, the published literature available on the experimental data pertaining to two phase flow through jet pumps was limited. Either they have used dimensional analysis or incorporated various loss coefficients to predict the efficiency of the jet pump. Earlier researchers have not made attempts to establish a theoretical model for mixing of the coaxial jets and the effect of parameters such as area ratio (R), nozzle distance from throat entrance (s/dt), mass flow ratio (M), head Ratio (N) and pressure drop on the performance of the jet pump.

Chapter 2

LITERATURE SURVEY

2.1 INTRODUCTION

Though extensive research work has been reported in the field of Two-phase flow, very few research papers have been published which deal with the two-phase flow behaviour in a jet pump and the resulting performance of the jet pump, particularly when the pump is subjected