REFERENCES:

• Baohong Ji, Drug susceptibility testing of *Mycobacterium leprae*. *Int J Lepr*,(1987); 55:830-835

• Bertranpetit, J & F Calafell, Genetic and geographical variability in cystic fibrosis: evolutionary considerations. *Ciba Found Symp.* (1996);197: 97-114

References

- Boeck, CW & Danielssen, DC. *Om Spedalskhed*. Christiania 1847

- Caillat-Zucman S , Daniel S, Djilali-Saiah I, Timsit J, Garchon Henri-Jean, Boitard C and Bach JF. Family study of linkage
disequilibrium between TAP2 transporter and HLA class II genes absence of TAP2 contribution to association with insulin-dependent diabetes mellitus. *Human Immunology* (1995); 44(2): 80–87

• Cox RA, K. Kempsell, L., Fairclough., and M.J. Colston, The 16S ribosomal RNA of Mycobacterium leprae contains a unique sequence which can be used for identification by the polymerase chain reaction. J Med Microbiol (1991); 35:284–90.

• Da Silva SA, Mazini PS, Reis PG, Sell AM, Tsuneto LT, Peixoto PR & El Visentainer J, HLA-DR and HLADQ alleles in patients
from the south of Brazil: markers for leprosy susceptibility an resistance. *BMC Infectious Diseases.* (2009); 9:134.

- De Vries RR, NK Mehra, MC Vaidya, MD Gupte, P Meera Khan, and JJ Van Rood, HLA-linked control of susceptibility to tuberculoid leprosy and association with HLA-DR types. *Tissue Antigens.* (1980); 16:294-304.

- De Vries, RR, RF Fat, LE Nijenhuis, and JJ van Rood.HLA-linked genetic control of host response to *Mycobacterium leprae.* *Lancet* (1976); ii:1328–1330

- de Wit MY, Klatser PR. *Mycobacterium leprae* isolates from different sources have identical sequences of the spacer region between the 16S and 23S ribosomal RNA genes *Microbiology.* (1994); 140 :1983-7.

- Dela Cruz E, Cellona RV, & Balagon, MVF Primary Drug Resistance in Cebu, the Phillipines: cause of concern. *Int. J. Lepr otherMycobact. Dis.* (1996); 64:253-256.
• Dharmendra, Notes on leprosy, The Ministry of Health: Govt. of India, 1969

• Dzierzykraw-Rogalski, Paleopathology of the Ptolemaic inhabitants of Dakhleh Oasis (Egypt). J Hum Evol. (1980); 9:71-74

• Egan, TM, Samways & Z. Li Biophysics of P2X receptors. Pflugers Arch, (2006); 452, 501-12.

• Fairbairn IP, CB Stober, DS Kumararatne & DA Lammamas ATP-mediated killing of intracellular mycobacteria by macrophages is

• Filliol I, Ferdinand S, Negroni L, Sola C & Rastogi N. Molecular Typing of Mycobacterium tuberculosis Based on Variable Number of Tandem DNA Repeats Used Alone and in Association with Spoligotyping Journal of Clinical Microbiology, (July 2000): 2520–2524

• Fitness J, Tosh K and Hil lAVS Genetics of susceptibility to leprosy. Genes and Immunity (2002); 3:441–453

• Foley PJ, Lympany PA, Puscinska E, Zielinski J, Welsh KI, du Bois RM. Analysis of MHC encoded antigen-processing genes TAP1 and TAP2 polymorphisms in sarcoidosis. Am J Respir Crit Care Med. (1999); 160:1009–1014

• Fsihi H and S T Cole. The Mycobacterium leprae genome: systematic sequence analysis identifies key catabolic enzymes,

- Godal T B Myrvang, SS Froland, J Shao, and G Melaku, Evidence that the mechanism of immunological tolerance (“central failure”) is operative in the lack of host resistance in lepromatous leprosy. *Scand J Immunol.* (1972); 1:311-21

- Gorodezky C, C Alaez, A Munguia, R Cruz, A Vazquez, A Camacho, O Flores, M Rodriguez, and O Rodriguez, Molecular
mechanisms of MHC linked susceptibility in leprosy: towards
the development of synthetic vaccines. *Tuberculosis* (Edinb)
(2004); 84:82-92.

- Gottesman MM, Pastan I. Biochemistry of multidrug resistance
 mediated by the multidrug transporter. *Annu. Rev. Biochem.*

- Goulart LR, Ferreira FR, Goulart IM: Interaction of TaqI
 polymorphism at exon 9 of the vitamin D receptor gene with the
 negative lepromin response may favor the occurrence of leprosy.

- Grahames, CB, Michel AD, Chessell IP & Humphrey PP
 Pharmacological characterization of ATP- and LPS-induced IL-

- Groathouse NA, B Rivoire, H Kim,H Lee, S N Cho, P J Brennan
 and V Vissa..Multiple Polymorphic loci for Molecular Typing of
 42:1666-1672.

- Grosset JH, Guelpa-Laurus CC, Bobin P et al. Study of 3
 documented relapses cases of multibacillary leprosy after

- Gu B J, R Sluyter, K K Skarratt, A N Shemon, L P Dao-Ung, S J
 Fuller, J A Barden, A L Clarke, S Petrou & J S. Wiley An Arg307

- Honore N, Perani E, Telenti A et al. A simple and rapid technique for the detection of rifampin resistance in

• Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson, JMet al. Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. *Genes and Immunity*, (2004); 5:46.

• Katoch VM. Recent advances in the development of techniques for diagnosis and epidemiology of leprosy. *Indian J Lepr* (1991); 63:362-370.

• Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ and Hugh-Jones ME Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within *Bacillus anthracis*. *J. Bacteriol.* (2000); 182:2928-2936

• Kim SK, Lee SB, Kang TJ and Gue-Tae Chae Detection of gene mutations related with drug resistance in *Mycobacterium leprae* from leprosy patients using Touch-Down (TD) PCR. *FEMS Immunology and Medical Microbiology* (2003); 36: 27-32

• Kumar B, Dogra S, Kaur I. Epidemiological characteristics of leprosy reactions: 15 years experience from north India. *International Journal of Leprosy and Other Mycobacterial Diseases* (2004); 72: 125.

• Lajoie J, Zijenah LS, Faucher MC et al Novel TAP1 polymorphisms in indigenous Zimbabweans: their potential implications on TAP function and in human diseases. *Hum Immun*(2003); 64 :823–829

• Lavania M, Katoch VM, Singh HB, Das R, Sharma VD and Chauhan DS et al Genetic polymorphism among *Mycobacterium*
leprae strains from Northern India, by using TTC repeats. *Ind J Lepr*(2005); 77:60-65

- Lechat MF The paleoepidemiology of leprosy: an overview. *Int J Lepr Other Mycobact Dis* (1999); 67: 460-70

- Lini N, Shankernarayan NP, and Dharmalingam K. Quantitative real-time PCR analysis of *Mycobacterium lepraë* DNA and mRNA in human biopsy material from leprosy and reactional cases. *Journal of Medical Microbiology.* (2009); 58:753–759

References

• Mira MT, A Alcais, N Van Thuc, VH Thai, NT Huong, NN Ba, A Verner, TJ Hudson, L Abel, and E Schurr, Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. *Nat Genet* (2003); 33 412-415.

• Mira MT, Alcaí’s A, VanThuc N et al. Susceptibility to leprosy is associated with PARK2 e PACRG. *Nature*(2004); 427: 636–640.

• Mischi E A, McDonald M,, Ranjit C, Sapkota B, Wells RD, Siddiqui RM, Kaplan G and Hawn TR. Human TLR1 Deficiency Is Associated with Impaired Mycobacterial Signaling and Protection from Leprosy Reversal ReactionMay (2008);(2) e231

• Mohanty JG, Raible DG, McDermott LJ, Pelleg A, Schulman ES. J Effects of purine and pyrimidine nucleotides on intracellular Ca2+ in human eosinophils: activation of

- North R A. Molecular physiology of P2X receptors. *Physiol Rev*, (2002); 82:1013-67

• Powis SH, Tonks S, Mockridge I, Kelly AP, Bodmer JG & Trowsdale J. Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. *Immunogenetics* (1993); 37: 373–380

• Ridley DS and Wise MJ. Reaction of the dermis in leprosy. *Int J Lepr* (1964); 32:24-36.

• Ridley DS, & Jopling WH. Classification of leprosy according to immunity—a five-group system. *Int. J. Lepr. Other Mycobact. Dis.* (1966); 34:255–273.
• Ridley DS. Bacterial indices. Leprosy in theory and practice. Bristol: John Wright and Sons; pp.(1964); 620-622.

• Robinson JH, Delvig AA. Diversity in MHC-II antigen presentation. *Immunology* (2002); 105:252-262.

• Rogers, and Muir, Leprosy, John Wright, Bristol, 1940.

• Santos AR, AS Almeida, PN Suffys, MO Moraes, VF Filho, HJ Mattos, JA Nery, PH Cabello, EP Sampaio, and EN Sarno, Tumor necrosis factor promoter polymorphism (TNF2) seems to protect against development of severe forms of leprosy in a pilot study in Brazilian patients. *Int J Lepr Other Mycobact Dis* (2000); 68:325-7.

• Santos AR, PN Suffys, PR Vanderborght, MO Moraes, LM Vieira, PH Cabello, AM Bakker, HJ Matos, TW Huizinga, TH Ottenhoff,

• Sehgal VN, Jain S and Charya SNPersisters, relapse (reactivation), drug resistance and multidrug therapy (MDT): uniform diagnostic guidelines for leprosy are needed. *J. Dermatol.* (1996); 23: 905-907

• Shaw MA, Donaldson IJ, A Collins, CS Peacock, Z Lins-Lainson, JJ Shaw, F Ramos, F Silveira, and JM Blackwell, Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes. Genes Immun (2001); 2: 196-204.

• Shetty VP, Uplekar MW and Antia NH. Primary resistance to single and multiple drugs in leprosy—-a mouse footpad study. Lepr. Rev. (1996); 67:280-286.

• Shi L, Yang G, Fu Y et al Human TAP1 polymorphisms detected by denaturing gradient gel electrophoresis. Tissue Antigens (1997); 49:421–426

• Shin YC, Lee H, Lee H, Walsh GP, Kim JD and Cho SN Variable numbers of TTC repeats in Mycobacterium leprae DNA from

- Smith JM, Smith NH, O'Rourke M & Spratt BG. How clonal are bacteria? *Proc Natl Acad Sci U S A.* (1993);90(10):4384-8

• Soundravally R & Hoti S L Immunopathogenesis of dengue hemorrhagic fever and shock syndrome: Role of TAP and HPA gene polymorphism *Human Immunology*(2007); 68: 973–979.

• Soundravally R & Hoti S L, Polymorphisms of the TAP 1 and 2 Gene May Influence Clinical Outcome of Primary Dengue Viral Infection,*Scandinavian Journal of Immunology* (2008);67: 618–625.

References

• Tekaia Fet al. Analysis of the proteome of *Mycobacterium tuberculosis* in silico. *Tubercle Lung Disease* (1999); 79: 329±342

• Tewari KM, Sinnathamby G, Rajagopal D, Laurence C, Eisenlohr A. Cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent.*Nature Immunology*(2005); 14(12):1456-60

• Truman RW and Krahenbuhl JL Viable *M. leprae* as a research reagent. *Int J Lepr Other Mycobact Dis*(2001); 69:1-12

• Van Kaer L, Ashton-Rickardt PG, Ploegh HL & Tonegawa, S. 1992 TAP1 mutant mice are deficient in antigen presentation, surface class I molecules and CD4-8+ T cells. *Cell* (1992);71:1205-1214.

• WHO India Leprosy situation in India epidemiological indicators. (2007). NLEP Indicators as on 31.06.07.

• Williams DL & Gillis TP. Molecular detection of resistance in Mycobacterium leprae. Lepr Rev (2004); 75:118–130.

• Young SK, Ponnighaus JM, Jain S and Young D, Use of Short Tandem Repeat Sequences to Study *Mycobacterium leprae* in Leprosy Patients in Malawi and India. *PLoS Negl Trop Dis*(2008); 2:e214.

