LIST OF FIGURES

Figure 1-1:	Typical Solid Rocket Motor	3
Figure 1-2:	Schematic Diagrams of TVC Mechanisms	4
Figure 1-3:	Typical Flex Nozzle System	10
Figure 1-4:	Typical Flex Seal	11
Figure 1-5:	Nomenclature of Flex Seal	12
Figure 2-1:	Typical Joints in Large Rocket Motors	50
Figure 3-1:	Flex Nozzle Configuration-D	52
Figure 3-2:	Flex seal design configuration-D	55
Figure 3-3:	Stress correction factor related to cone angle [40]	60
Figure 3-4:	Correction factor, K_m related to motor chamber pressure [44]	61
Figure 3-5:	Buckling stress of reinforcements as a function of reinforcement dimensions and properties [40]	62
Figure 3-6:	Shims 1 to 7 - Configuration - D	65
Figure 3-7:	Fore end Ring - Configuration - D	66
Figure 3-8:	Aft end Ring - Configuration – D	67
Figure 3-9:	Flex seal with thermal boot, configuration -D	70
Figure 3-10:	Flex seal sub-assembly - Configuration - D	71
Figure 3-11:	Throat Housing - Configuration - D	73
Figure 3-12:	Intermediate dome - Configuration - D	74
Figure 3-13: Dynamic Envelope - Configuration - D 78
Figure 3-14: Flex nozzle interfaces - Configuration - D 81
Figure 3-15: Realised Flex seal ... 92
Figure 3-16: Realised Flex nozzle ... 92
Figure 3-17: Flex nozzle system development methodology 93
Figure 4-1: Tensile test specimen - elastomer 96
Figure 4-2: QLSS test specimen- elastomer 97
Figure 4-3: Stress Vs Strain for Tensile Test Specimen – Elastomer ... 97
Figure 4-4: Stress Vs Strain for QLSS Specimen - Elastomer 98
Figure 4-5: Tensile Test Specimen - Reinforcement 99
Figure 4-6: Stress vs. Strain curve for tensile tests - Reinforcement .. 100
Figure 4-7: Comparison of Material Models 102
Figure 4-8: Mooney Rivlin Constants for Elastomer 104
Figure 4-9: Two Parameter Mooney Rivlin Model 105
Figure 4-10: FE model of the QLSS specimen 107
Figure 4-11: Displacement plot in a QLSS specimen 107
Figure 4-12: Comparison of FEA predictions and Experimental Results for a QLSS Specimen 108
Figure 5-1: CAD model of flex seal – load case-1 111
Figure 5-2: Finite Element model with loading and Boundary Condition – case-1 ... 112

Figure 5-3: CAD model of flex seal – load case – 2 & 3 113

Figure 5-4: FE model with loading and boundary condition – load case-2 & 3 ... 114

Figure 5-5: Seal compression plot of flex seal – load case - 1 120

Figure 5-6: Hoop stress plot of flex seal – load case – 1 121

Figure 5-7: Hoop stress plot of flex seal – load case - 2 122

Figure 5-8: Hoop stress plot of flex seal – load case - 3 123

Figure 5-9: CAD model of flex seal with thermal boot 134

Figure 5-10: FE model of flex seal with thermal boot 135

Figure 5-11: Deformed shape of flex seal with thermal boot 136

Figure 6-1: Developmental test plan for flex seal tests. 140

Figure 6-2: Typical Strain Gauge Plan 145

Figure 6-3: Instrumentation setup for acceptance test of flex seals .. 146

Figure 6-4: Proof pressure test set-up drawing (Configuration-A). 149

Figure 6-5: Null position & Vectoring test set-up drawing (Configuration-A) ... 150

Figure 6-6: Vectoring test set-up with instrumentation (Configuration-A) ... 150
Figure 6-7: Vectoring test set-up with instrumentation (Configuration-B) .. 151

Figure 6-8: Vectoring test set-up with instrumentation (Configuration-C) .. 151

Figure 6-9: Proof Pressure test set-up with instrumentation (Configuration-D) .. 152

Figure 6-10: Vectoring test set-up with instrumentation (Configuration-D) .. 152

Figure 6-11: Vectoring test set-up with instrumentation (Configuration-E & F) .. 153

Figure 6-12: A typical Integrated test set-up drawing 154

Figure 6-13: A typical realised Integrated test set-up...................... 154

Figure 7-1: Seal compression versus pressure – Hysteresis behavior .. 159

Figure 7-2: Comparison of seal compression from test data with FEA prediction ... 160

Figure 7-3: Comparison of hoop stress in mid shim from test data with FEA prediction ... 161

Figure 7-4: Variation of hoop stress vs. angle during simultaneous vectoring test within mid shim 170

Figure 7-5: Hoop stress vs. vectoring angle during loading from +40 to -40 simultaneous vectoring test 171
Figure 7-6: Variation of actuator force vs. vectoring angle 172

Figure 7-7: Actuator force (Pitch) versus angle compared with FEA predictions for three flex seals. 173

Figure 7-8: Seal torque with and without boot........................... 174