Table of Contents

Title page ii
Declaration iii
Certificates iv
Acknowledgements vi
Abstract viii
Table of Contents x
List of Tables xiii
List of Figures xiv
List of flow charts xv
List of Abbreviations xvii

Chapter 1 Introduction and Review of literature

1.1 Japanese encephalitis 2
1.1.1 Outbreaks of JE disease 2
1.1.2 Life cycle of JE 5
1.1.3 Prevention of Japanese encephalitis 7
1.1.4 Vectors of Japanese encephalitis 8
1.2 Aerodynamic classification of insects 9
1.3 Wing beat frequency of Mosquito 12
1.4 Design of flight surface (wing) of natural fliers 13
1.5 Aerodynamic parameters of Mosquito 14
1.6 Lift and other forces 15
1.7 Speed of flight in Insects 17
1.8 Power requirements of Insect flight 19
1.9 Energy reserves for flight of Insects 23
1.10 Aim of the study 28

Chapter 2 Materials and Methods

2.1 Field Surveys 29
2.1.1 Site assessment 29
2.1.2 Collection and transportation of mosquitoes 29
2.1.3 Morphological keys for identification 31
2.1.3.1 Identification keys for Cx. gelidus 31
2.1.3.2 Identification keys for Cx. tritaeniorhynchus 31
2.2 Laboratory rearing and maintenance 32
2.2.1 Adult feeding 32
2.2.2 Care of eggs 33
2.2.3 Larval rearing 33
2.3 Wing beat frequency of mosquitoes 35
2.3.1 Theoretical models for wing beat frequency 35
2.3.1.1 Mechanical oscillator theory 35
2.3.1.2 Dimensional analysis 35
2.3.1.3 Wing beat using Newton’s law 36
2.3.1.4 Mass flow theory 37
2.3.2 Experimental model using Stroboscopic flash method 39
2.4 Aerodynamic parameters of mosquitoes 40
2.4.1 Calculation of moment of inertia of flight surface (wing) 40
2.4.2 Basic and derived parameters of flight system of mosquito 43
2.5 Speed of mosquito flight 45
2.5.1 Wind tunnel 45
2.5.2 Wind vane anemometer 46
2.5.3 Experiment for speed of flight 48
2.6 Power requirements of mosquito 49
2.6.1 Induced power 49
2.6.2 Inertial power 51
2.6.3 Aerodynamic power 52
2.6.4 Dynamic efficiency 52
2.7 Biochemical analyses in mosquitoes 53
2.7.1 Materials and solutions 53
2.7.2 Standards 53
2.7.2.1 Calibration curve for lipid estimation 53
2.7.2.2 Calibration curve for sugar (glucose), glycogen and total carbohydrates 54
2.7.3 Method for biochemical analysis 54
2.7.3.1 Extraction of lipid, glucose and glycogen from mosquito 55
2.7.3.2 Quantification of lipid in mosquito 56
2.7.3.3 Quantification of glucose in mosquito 56
2.7.3.4 Quantification of glycogen in mosquito 57
2.7.3.5 Quantification of total carbohydrate content in mosquito 57
2.8 Statistical analysis 57

Chapter 3 Results

3.1 Wing beat frequency of mosquitoes 59
3.1.1 Wing beat frequency of Cx. tritaeniorhynchus 59
3.1.2 Wing beat frequency of Cx. gelidus 62
3.2 Body parameters of Cx. tritaeniorhynchus 65
3.2.1 Static parameters of Cx. tritaeniorhynchus 65
3.2.2 Dynamic parameters of Cx. tritaeniorhynchus 67
3.2.3 Dynamic parameters of air induced by Cx. tritaeniorhynchus 68
3.2.4 Aerodynamic parameters of Cx. tritaeniorhynchus 69
3.3 Body parameters of Cx. gelidus 70
3.3.1 Static parameters of *Cx. gelidus* 71
3.3.2 Dynamic parameters of *Cx. gelidus* 72
3.3.3 Dynamic parameters of air induced by *Cx. gelidus* 73
3.3.4 Aerodynamic parameters of *Cx. gelidus* 74
3.4 Speed of *Cx. tritaeniorhynchus* and *Cx. gelidus* 81
3.5 Power requirements of *Cx. tritaeniorhynchus* 81
3.6 Power requirements of *Cx. gelidus* 83
3.7 Biochemical analysis in *Cx. tritaeniorhynchus* 89
3.8 Biochemical analysis in *Cx. gelidus* 98

Chapter 4 Discussion

4.1 Wing beat frequency of *Cx. tritaeniorhynchus* and *Cx. gelidus* 107
4.2 Basic and derived body parameters of *Cx. tritaeniorhynchus* and *Cx. gelidus* 110
4.3 Speed of *Cx. tritaeniorhynchus* and *Cx. gelidus* 114
4.4 Power requirements of *Cx. tritaeniorhynchus* and *Cx. gelidus* 115
4.5 Biochemical analysis of *Cx. tritaeniorhynchus* and *Cx. gelidus* 120
4.6 Significance of the work 123

Chapter 5 Summary, Conclusions and Future perspectives

5.1 Summary 125
5.2 Conclusions 130
5.3 Future perspectives 132

References 134

Appendix 148

List of Publications 150