CONCLUSION
Conclusions

- Valsartan was prepared from starting materials such as 1-triphenylmethyl-5-[4’-(bromomethyl)biphenyl-2yl]tetrazole and L-valine methyl ester hydrochloride. Valsartan with less than 5ppm tin content with greater than 99.5% enantiomeric excess was achieved by the improved process. All the compounds were characterized by IR, NMR and mass spectra.

- The valine moiety of valsartan was successfully replaced with pharmacophores like (trans)-4-cyclohexyl-L-proline and (2S,3aR,7aS)octahydro-1H-indole-2-carboxylic acid, and N-2-[4-(pyridine-2-yl)benzyl]hydrazine that resulted in new series of biphenyl derivatives. All the new compounds were characterized by IR, NMR, and mass spectra.

- 4’-hydroxycarvedilol, 5’-hydroxycarvedilol and desmethyl carvedilol were prepared from commercially available vanillin, isovanillin and salicylaldehyde. All the new compounds were characterized by IR, NMR and mass spectra.

- (S)-Amino acid was successfully inserted in between carbazole and methoxyphenoxyethylamine. Carbazole acyclic amino acid and
carbazole substituted proline derivatives were synthesized. All the new compounds were characterized by IR, NMR and mass spectra.

- The valine terminal moiety of ritonavir was successfully replaced with methyl (S)-1-((2S,3S)-3-hydroxy-1-phenylbutan-2-ylcarbamoyl)-2,2-dimethylpropyl carbamate of atazanavir. The new series of ritonavir analogs were synthesized and characterized by IR, NMR and mass spectra.
PUBLICATIONS