FIRST DRAFT OF ACHIEVEMENT TEST IN MATHEMATICS

DEVELOPED BY
(INVESTIGATOR)

DEPARTMENT OF EDUCATION
PANJAB UNIVERSITY
CHANDIGARH
FIRST DRAFT OF ACHIEVEMENT TEST

Name.................................. Class................... Roll No..................
Sex................... School Date..................

General Instructions

(i) Do not turn this page until you are told to do so.
(ii) Firstly fill your bio-data given above.
(iii) Read each question carefully. Each question in this test is followed by four options (a, b, c, d). You have to choose the correct response and write it against the serial number of the question given in the separate answer sheet.
(iv) Each question has one mark. If you want to change your answer, do so by rewriting it.
(v) Do not write anything on the question paper.
(vi) After solving question paper, handover both question paper and answer sheet to the teacher.
(vii) The maximum marks for the test are 91 and time limit for the test is 75 minutes.
1. Which one of the following is a pure surd?
(a) $\sqrt{5}$
(b) $\sqrt{25}$
(c) $\sqrt{27}$
(d) $\sqrt{9}$

2. Which one of the following is irrational number?
(a) 0.15
(b) $\frac{2}{3}$
(c) $\sqrt{2}$
(d) 8

3. The $\frac{p}{q}$ form of $0.3333\ldots$ is
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $\frac{1}{7}$
(d) $\frac{1}{9}$

4. Which one of following is a surd?
(a) $\sqrt{3} \times \sqrt{6}$
(b) $\sqrt{7} \times \sqrt{7}$
(c) $\sqrt{27} \times \sqrt{3}$
(d) $\sqrt{125} \times \sqrt{5}$

5. O (zero) is a/an __________ number
(a) Rational
(b) Irrational
(c) Both rational and irrational
(d) Neither rational nor irrational

6. Rationalised form of $\frac{\sqrt{2}}{\sqrt{3}}$ is $\frac{\sqrt{18}}{3}$
(a) 5
(b) 4
(c) 2
(d) 3

7. Match the following:
(A) $\sqrt{32}$
(B) $\sqrt{9}$
(C) $\sqrt{25}$
(D) $\sqrt{16}$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(ii)</td>
<td>(i)</td>
<td>(iv)</td>
</tr>
<tr>
<td>(b)</td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
</tr>
<tr>
<td>(c)</td>
<td>(iii)</td>
<td>(iv)</td>
<td>(i)</td>
</tr>
<tr>
<td>(d)</td>
<td>(iv)</td>
<td>(ii)</td>
<td>(iii)</td>
</tr>
</tbody>
</table>

8. Simplify: $\sqrt{192}$
(a) $\sqrt{12}$
(b) $4 \sqrt{3}$
(c) $6 \sqrt{12}$
(d) 2

9. The decimal representation of $\frac{11}{1000}$ is
(a) 0.0011
(b) 0.011
(c) 0.11
(d) 0.00011

10. The rationalised form of $\frac{\sqrt{5}+1}{\sqrt{5}-1}$ is
(a) $3 + \sqrt{5}$
(b) $3 - \sqrt{5}$
(c) $\frac{3+x}{2}$
(d) $\frac{3-x}{2}$
11. Express \(\frac{2\sqrt{77}}{\sqrt{11}} \) as an expression with rational denominator

(a) \(\frac{2\sqrt{77}}{\sqrt{11}} \) \hspace{1cm} (b) \(2\sqrt{77} \) \hspace{1cm} (c) \(\frac{2\sqrt{77}}{\sqrt{11}} \) \hspace{1cm} (d) \(\sqrt{77} \)

12. Express \(\frac{3}{4} \) in decimal form

(a) 0.75 \hspace{1cm} (b) 0.70 \hspace{1cm} (c) 0.80 \hspace{1cm} (d) 0.72

13. Express \(3.2 \) in the form of \(\frac{p}{q} \)

(a) \(\frac{29}{9} \) \hspace{1cm} (b) \(\frac{20}{9} \) \hspace{1cm} (c) \(\frac{14}{7} \) \hspace{1cm} (d) \(\frac{35}{10} \)

14. Match the following identities:

(A) \(a^3 + b^3 \) \hspace{1cm} (i) \((a - b)(a^2 + ab + b^2) \)
(B) \(a^3 - b^3 \) \hspace{1cm} (ii) \((a + b)(a^2 - ab + b^2) \)
(C) \(a^4 - b^4 \) \hspace{1cm} (iii) \((a + b)(a - b) \)
(D) \(a^2 - b^2 \) \hspace{1cm} (iv) \((a^2 + b^2)(a + b)(a - b) \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(ii)</td>
<td>(i)</td>
<td>(iv)</td>
</tr>
<tr>
<td>(b)</td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
</tr>
<tr>
<td>(c)</td>
<td>(iii)</td>
<td>(iv)</td>
<td>(i)</td>
</tr>
<tr>
<td>(d)</td>
<td>(iv)</td>
<td>(ii)</td>
<td>(iii)</td>
</tr>
</tbody>
</table>

15. Factorize: \(4 - 100x^2 \)

(a) \((1 - 5x)(1 + 5x) \) \hspace{1cm} (b) \(4(1 - 5x)(1 + 5x) \)
(c) \((1 - 5x)^2 \) \hspace{1cm} (d) \((1 + 5x)^2 \)

16. Factorization of \(x^4 - 81 \) is

(a) \((x^2 + 3)(x + 3)(x - 3) \) \hspace{1cm} (b) \((x^2 - 3)(x + 3)(x - 3) \)
(c) \((x^2 + 9)(x+3)(x - 3) \) \hspace{1cm} (d) \((x^2 - 3)(x + 3)(x - 3) \)

17. Factorize: \(y^3 - y \)

(a) \(y(y - 1)(y + 1) \) \hspace{1cm} (b) \(y(y - 1) \) \hspace{1cm} (c) \(y(y + 1) \) \hspace{1cm} (d) \((y + 1)^2 \)

18. Factorization of \(2x^2 + 7x + 3 \) is

(a) \((x + 1)(2x + 3) \) \hspace{1cm} (b) \((x + 1)(2x + 3) \) \hspace{1cm} (c) \(2x + 1)(x + 3) \) \hspace{1cm} (d) \((x + 3)(2x + 3) \)

19. Factorization of \(7x^2 + 14xy \) is

(a) \(7x(x + 2y) \) \hspace{1cm} (b) \(7x(x + 14y) \) \hspace{1cm} (c) \(2x(7x + 7y) \) \hspace{1cm} (d) \(7x^2(x + 2y) \)

20. One factor of \(x^2 - 2x + 1 \) is

(a) \(x - 2 \) \hspace{1cm} (b) \(x - 1 \) \hspace{1cm} (c) \(x + 2 \) \hspace{1cm} (d) \(x + 1 \)
21. Factorise: $2x^2 + x - 6$
 (a) $(2x - 3) (x + 2)$ (b) $(2x - 3) (x - 2)$
 (c) $(2x + 3) (x - 2)$ (d) $(2x + 3) (x + 2)$

22. Factorise: $9x^2 - 6xy$
 (a) $3x (3x + 2y)$ (b) $3x (3x - 2y)$
 (c) $3x^2 (3x + 2y)$ (d) $3x^2 (3x - 2y)$

23. The value of identity $(a + b)^3$ is
 (a) $a^3 + b^3 - 3a^2b - 3ab^2$ (b) $a^3 + b^3 = 3a^2b + 3ab^2$
 (c) $a^3 + b^3 = 3a^2b + 3ab^2$ (d) $a^3 - b^3 - 3a^2b - 3ab^2$

24. The value of $x^2 - 25$ is
 (a) $(x - 5)^2$ (b) $(x + 5)^2$ (c) $(x + 5) (x - 5)$ (d) $(x + 5)$

25. The value of x for equation $3x + 8 = 11$ is
 (a) 0 (b) 1 (c) 2 (d) 3

26. The value of x for the equation $x + 8 = 4x + 8$ is
 (a) 1 (b) 2 (c) 3 (d) 0

27. The value of x for the equation $x + 4 = 3x$ is
 (a) 2 (b) 3 (c) 4 (d) 5

28. Match the following points to the quadrant in which they lie:
 (A) $(2, -3)$ (B) $(-2, 3)$ (C) $(-2, -3)$ (D) $(2, 3)$
 (i) 1^{st}/ first (ii) 3^{rd}/ third (iii) 2^{nd}/ second (iv) 4^{th}/ fourth

29. If $x = 2$ and $y = 1$, then the value of $3x + y$ is
 (a) 3 (b) 5 (c) 7 (d) 9

30. If $x = 3$ is a solution of $3x - 2y = -1$, then the value of y is
 (a) 3 (b) 5 (c) 2 (d) 1

31. If $y = 5$ is a solution of $3x + y = 14$, then the value of x is
 (a) 3 (b) 4 (c) 5 (d) 6
32. Solve \(7 - 4(x - 3) = 3\) for the value of \(x\)
 (a) 1 (b) 2 (c) 3 (d) 4

33. Which of the following points lie on the x-axis?
 (5, 0), (0, -3), (2, 2), (0, 1), (1, 1), (-1, 0)
 (a) (0, -3), (0, 1) (b) (5, 0), (-1, 0) (c) (2, 2), (1, 1) (d) (0, -3), (2, 2)

34. How many total numbers of quadrants are there?
 (a) One (b) Two (c) Three (d) Four

35. Which of the following points lie on the y-axis?
 (7, 0), (1, -2), (2, 2), (0, 2), (0, -1), (-4, 0)
 (a) (0, 2), (0, -1) (b) (7, 0), (-4, 0) (c) (2, 2), (1, -2) (d) (7, 0), (2, 2)

36. Solve the following equation:
 \(m - 7 = 4m + 8\)
 (a) 4 (b) 5 (c) -4 (d) -5

37. The angles whose sum is 90° are known as ______ angles.
 (a) Complementary (b) Supplementary (c) Acute (d) Obtuse

38. All points lying on the same line are known as ______ points.
 (a) Coplanar (b) Collinear (c) Vertex (d) None of these

39. The angles whose sum is 180° are known as ______ angles.
 (a) Complementary (b) Supplementary (c) Right angle (d) Acute

40. Which of the following pairs are supplementary?
 (a) 30°, 120° (b) 40°, 140° (c) 30°, 60° (d) 40°, 50°

41. Which of the following pairs are complementary?
 (a) 30°, 120° (b) 40°, 140° (c) 30°, 60° (d) 50°, 50°

42. Find the angle supplementary to the angle 30°
 (a) 60° (b) 150° (c) 100° (d) 80°

43. Find the angle complementary to the angle 50°
 (a) 40° (b) 50° (c) 130° (d) 100°

44. The angles of a triangle are in 3:5:10. Find three angles?
 (a) 50°, 30°, 100° (b) 100°, 30°, 50° (c) 30°, 50°, 100°
 (d) 30°, 100°, 50°

45. In given figure, XOY is a line. Here XOZ = 3x and ZOY = 6x. Find x.
 (a) x = 20 (b) x = 10 (c) x = 30 (d) x = 60
46. In given figure, OM and ON are opposite rays. If MOP = 70°, find NOP.
 (a) 120° (b) 90° (c) 110° (d) 100°

47. A point has no _____________.
 (a) Vertex (b) End (c) Dimension (d) Start

48. The common point between the arms of an angle is known as _____________.
 (a) Collinear (b) Vertex (c) Non-collinear (d) Coplanar

49. Non-intersecting lines are also known as ____________ lines.
 (a) Equal (b) Concurrent (c) Parallel (d) Collinear

50. The lines which have one common point lying on them are known as ____________ lines.
 (a) Parallel (b) Intersecting (c) Concurrent (d) Coplanar

51. If one angle made by two intersecting lines is 30°, then the vertically opposite angle to that angle is
 (a) 60° (b) 30° (c) 90° (d) 360°

52. What is the angle measure of straight line?
 (a) 180° (b) 90° (c) 360° (d) 270°

53. If one angle of a linear pair is obtuse then other must be _____________.
 (a) Acute (b) Obtuse (c) Right angle (d) Reflex angle

54. Match the following by reducing into simplest form:

 (A) \[
 \frac{45}{35} \quad \frac{35}{35} \quad (i) \quad \frac{5}{3} \quad (ii)
 \]

 (B) \[
 \frac{20}{10} \quad (ii) \quad 5 \quad (ii)
 \]

 (C) \[
 \frac{25}{15} \quad (iii) \quad \frac{9}{7} \quad (iii)
 \]

 (D) \[
 \frac{45}{9} \quad (iv) \quad 3 \quad (iv)
 \]

 A B C D
 (a) (ii) (i) (iv) (iii)
 (b) (iii) (iv) (i) (ii)
 (c) (iv) (iii) (ii) (i)
 (d) (iv) (ii) (iii) (i)

55. Reduce \(\frac{125}{100}\) Rs in simplest form

 (a) \(\frac{5}{4}\) Rs (b) \(\frac{4}{5}\) Rs (c) \(\frac{5}{4}\) Rs (d) \(\frac{4}{5}\) Rs
56. Which ratio is greater: \(\frac{3}{5} \) or \(\frac{7}{8} \)
 (a) \(\frac{3}{5} \) (b) \(\frac{7}{8} \) (c) Both \(\frac{3}{5} \) and \(\frac{7}{8} \) (d) Neither \(\frac{3}{5} \) nor \(\frac{7}{8} \)

57. Find the compounded ratio of 2:3, 4:5
 (a) 8:15 (b) 6:8 (c) 2:8 (d) 2:4

58. What must be added to 6, 10, 14, and 22 so that they become proportional?
 (a) 2 (b) 3 (c) 4 (d) 5

59. Apply componendo and dividendo to \(\frac{x}{2} = \frac{y}{4} \)
 (a) \(\frac{x - 2}{x + 2} = \frac{y - 4}{y + 4} \) (b) \(\frac{x + 2}{x - 2} = \frac{y + 4}{y - 4} \)

60. What is the ratio of cost of a car Rs 35,00,000 to weight of an elephant 15 tonnes?
 (a) \(\frac{700}{3} \) (b) \(\frac{70}{3} \) (c) \(\frac{7}{3} \) (d) Question is absurd

61. Find the value of a for which 3: a :: 12:20
 (a) 5 (b) 10 (c) 15 (d) 20

62. Find a fourth proportional to 8, 14, and 16
 (a) 20 (b) 28 (c) 25 (d) 30

63. Find a third proportional to 4 and 8
 (a) 15 (b) 17 (c) 16 (d) 18

64. Find the mode of the following data:
 8,13,11,17,8,5,11,7,15,14,8
 (a) 8 (b) 5 (c) 11 (d) 14

65. The unorganised and unarranged data is called _______ data.
 (a) Raw or Ungrouped (b) Grouped (c) Primary (d) Secondary

66. Find median of the following data:
 17, 23,46,33,29,28,20,54
 (a) 30 (b) 33 (c) 29 (d) 28.5

67. The observation having maximum frequency in the given data is called _______.
 (a) Mean (b) Median (c) Mode (d) standard deviation

68. The numerical observation collected in statistics is called ________.
 (a) Data (b) Scores (c) Numbers (d) Digits

69. The data collected by the investigator himself is called ________ data.
 (a) Primary (b) Secondary (c) Raw (d) tertiary
70. Find the mean of the following data:
10, 15, 5, 25, 20
(a) 15 (b) 10 (c) 18 (d) 20

71. If the mean of 10, 12, 15, 14, 8, k, 9, 12, 17, 13 is 12. Find the value of k?
(a) k = 20 (b) k = 10 (c) k = 15 (d) k = 25

72. Find the median of the following data:
15, 35, 18, 24, 20, 25, 29, 17, 21
(a) 21 (b) 18 (c) 20 (d) 29

73. The class mark of class interval 20 — 30 is
(a) 30 (b) 25 (c) 60 (d) 50

74. Match the following:
(A) The upper limit of class interval 20 — 30 (i) 20
(B) The lower limit of class interval 20 — 30 (ii) 50
(C) The lower limit of class interval 50 — 60 (iii) 60
(D) The upper limit of class interval 50 — 60 (iv) 30

A B C D
(a) (iv) (i) (ii) (iii)
(b) (i) (ii) (iii) (iv)
(c) (iii) (iv) (i) (ii)
(d) (ii) (i) (iv) (iii)

75. The class marks of a distribution are 30, 50, 70, 90, 110 and 130. Determine the class size.
(a) 10 (b) 20 (c) 15 (d) 5

76. How many sides are there in the quadrilateral?
(a) Two (b) Four (c) Three (d) Five

77. Every rectangle is also a
(a) Square (b) Rhombus (c) Parallelogram (d) Trapezium

78. If length of one diagonal of square is 8cm, then length of other diagonal is
(a) 8cm (b) 16cm (c) 4cm (d) 10cm

79. If the angles of quadrilateral are equal, then it is a
(a) Rhombus (b) Rectangle (c) Trapezium (d) Pentagon

80. The sum of four angles of a quadrilateral is
(a) 360° (b) 180° (c) 420° (d) 90°
81. If the length of one side of Rhombus is 3cm, then what will be length of each other sides of rhombus?
(a) 3cm (b) 6cm (c) 18cm (d) 9cm

82. If a diagonal of parallelogram divides it in two triangles and area of one triangle is 25cm², then the area of other triangle is
(a) 25 cm² (b) 5 cm² (c) 12.5 cm² (d) 50 cm²

83. If one side of rectangle is of length 5cm, then its opposite side must be of length
(a) 10cm (b) 15cm (c) 5cm (d) 20cm

84. If ABCD is a parallelogram and angle A = 70°, then find angle C?
(a) 70° (b) 130° (c) 110° (d) 290°

85. In a parallelogram the opposite angles are
(a) Supplementary (b) Equal (c) Complementary (d) Neither supplementary nor complementary

86. Opposite sides of trapezium are equal.
(a) True (b) False

87. If one side of parallelogram is 10cm, then its opposite side must be of length
(a) 5cm (b) 10cm (c) 15cm (d) 20cm

88. In a rhombus, the diagonals
(a) Bisect at 90° (b) Perpendicular but do not bisects (c) Parallel (d) Equal

89. In a parallelogram, the diagonals
(a) Bisect each other (b) Bisect at 90° (c) Perpendicular (d) Equal

90. The figure formed by joining the mid points of a quadrilateral is
(a) Rhombus (b) Parallelogram (c) Triangle (d) Rectangle

91. If a pair of opposite side are equal and parallel in a quadrilateral, then it is a
(a) Rhombus (b) Parallelogram (c) Trapezium (d) Square
ANSWER SHEET

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>24</td>
<td>Ans</td>
<td>47</td>
<td>Ans</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>25</td>
<td>Ans</td>
<td>48</td>
<td>Ans</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26</td>
<td>Ans</td>
<td>49</td>
<td>Ans</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>27</td>
<td>Ans</td>
<td>50</td>
<td>Ans</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>28</td>
<td>Ans</td>
<td>51</td>
<td>Ans</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>29</td>
<td>Ans</td>
<td>52</td>
<td>Ans</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>30</td>
<td>Ans</td>
<td>53</td>
<td>Ans</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>31</td>
<td>Ans</td>
<td>54</td>
<td>Ans</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>32</td>
<td>Ans</td>
<td>55</td>
<td>Ans</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>33</td>
<td>Ans</td>
<td>56</td>
<td>Ans</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>34</td>
<td>Ans</td>
<td>57</td>
<td>Ans</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>35</td>
<td>Ans</td>
<td>58</td>
<td>Ans</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>36</td>
<td>Ans</td>
<td>59</td>
<td>Ans</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>37</td>
<td>Ans</td>
<td>60</td>
<td>Ans</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>38</td>
<td>Ans</td>
<td>61</td>
<td>Ans</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>39</td>
<td>Ans</td>
<td>62</td>
<td>Ans</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>40</td>
<td>Ans</td>
<td>63</td>
<td>Ans</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>41</td>
<td>Ans</td>
<td>64</td>
<td>Ans</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>42</td>
<td>Ans</td>
<td>65</td>
<td>Ans</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>43</td>
<td>Ans</td>
<td>66</td>
<td>Ans</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>44</td>
<td>Ans</td>
<td>67</td>
<td>Ans</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>45</td>
<td>Ans</td>
<td>68</td>
<td>Ans</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>46</td>
<td>Ans</td>
<td>69</td>
<td>Ans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Score =
SCORING KEY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>24</td>
<td>C</td>
<td>47</td>
<td>C</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>25</td>
<td>B</td>
<td>48</td>
<td>B</td>
<td>71</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>26</td>
<td>D</td>
<td>49</td>
<td>C</td>
<td>72</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>27</td>
<td>A</td>
<td>50</td>
<td>B</td>
<td>73</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>28</td>
<td>C</td>
<td>51</td>
<td>B</td>
<td>74</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>29</td>
<td>C</td>
<td>52</td>
<td>A</td>
<td>75</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>30</td>
<td>B</td>
<td>53</td>
<td>A</td>
<td>76</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>31</td>
<td>A</td>
<td>54</td>
<td>B</td>
<td>77</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>32</td>
<td>D</td>
<td>55</td>
<td>C</td>
<td>78</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>33</td>
<td>B</td>
<td>56</td>
<td>B</td>
<td>79</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>34</td>
<td>D</td>
<td>57</td>
<td>A</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>35</td>
<td>A</td>
<td>58</td>
<td>A</td>
<td>81</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>36</td>
<td>D</td>
<td>59</td>
<td>B</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>37</td>
<td>A</td>
<td>60</td>
<td>D</td>
<td>83</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>38</td>
<td>B</td>
<td>61</td>
<td>A</td>
<td>84</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>39</td>
<td>B</td>
<td>62</td>
<td>B</td>
<td>85</td>
<td>B</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>40</td>
<td>B</td>
<td>63</td>
<td>C</td>
<td>86</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>41</td>
<td>C</td>
<td>64</td>
<td>A</td>
<td>87</td>
<td>A</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>42</td>
<td>B</td>
<td>65</td>
<td>A</td>
<td>88</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>43</td>
<td>A</td>
<td>66</td>
<td>D</td>
<td>89</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>44</td>
<td>C</td>
<td>67</td>
<td>C</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>45</td>
<td>A</td>
<td>68</td>
<td>A</td>
<td>91</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>46</td>
<td>C</td>
<td>69</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24