


References


sequence variants in susceptibility to hereditary and sporadic prostate cancer. Prostate, 56(1):37-44.


References

susceptibility in a Greek population exposed and not exposed to pesticides. Toxicol. Lett. 151(1):267-71


References


References

Fukatsu, T., Hirokaw, Y., Araki, T., Hioki, T., Murata, T., Suzuki, H., Ichikawa, T.,
Tsukino, H., Qiu, D., Katoh, T., Sugimura, Y., Yatani, R., Shiraishi, T., and
Watanabe M. (2004). Genetic polymorphisms of hormone-related genes and


Prospective study of sex hormone levels and risk of prostate cancer. J. Natl.

GBX2 expression inhibits human prostate cancer clonogenic ability and

Gao, A.C., Lou, W., Dong, J.T., and Isaacs, J.T. (1997). CD44 is a metastasis
Cancer Res. 57: 846-849.

Defining regulatory elements in the human KAI1 (CD 82) metastasis
suppressor gene. Prostate, 57(4): 256-60.

Georget, V., Lobaccaro, J., Terouanne, B., Maogeat, P., Nicolas, J., and Sultan, C.

of prostate cancer: a multi-center case-control study in Canada. Int. J.
Cancer, 70: 679-81.

prospective study of cruciferous vegetables and prostate cancer. Cancer

(1997). The CAG repeat within the androgen receptor gene and its
relationship to prostate cancer. PNAS. 94: 3320-3323.


vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J. Bone Miner Res. 11:1850-5.


References


gene (NKX3J) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics, 43:69-77.


References


Labrie, F., Sugimoto, Y., Luu-The, V., Simard, J., Lachance, Y., Bachvarov, D.,
Leblanc, G., Durocher, F., and Paquet, N. (1992). Structure of human type II 5α-
Ladero, J., Benitez, J., Jara, C., Llerena, A., Valdivielso, M., Munoz, J., and Vargas,
Lamharzi, N., Johnson, M.M., Goodman, G., Etzioni, R., Weiss, N.S., Dightman,
in the 5alpha-reductase type II gene and the incidence of prostate cancer. Int.
Progesterone receptor gene polymorphism and risk for breast and ovarian
Lange, E.M., Chen, H., Brierley, K., Livermore, H., Wojno, K.J., Langefeld, C.D.,
Lange, K., and Cooney, K.A. (2000). The polymorphic exon 1 androgen
receptor CAG repeat in men with a potential inherited predisposition to
estrogen receptor beta 1, beta 2, and beta 5 messenger RNAs in human breast
Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., et al. (1997). PTEN,
a putative protein tyrosine phosphatase gene mutated in human brain, Breast,


Matsui, T., Hirai, M., Hirano, M., and Kurosawa, Y. (1993a). The HOX complex neighbored by the EVX gene, as well as two other homeobox-containing genes, the GBX-class and the EN-class, are located on the same chromosome 2 and 7 in humans. FEBS lett. 336:107-110.


Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59:4291-4296.


References


150


Pickles, T., Liu, M., Berthelet, E., Kim-Sing, C., Kwan, W., Tyldesley, S., and prostate cohort outcomes initiative (2004). The effect of smoking on outcome...


Prior, T., and Waxman, J. (2000). Localized prostate cancer: can we do better? There have been some advances in local control, but little impact on survival. BMJ. 320:69-70.


restriction fragment length polymorphism in intron G of the progesterone receptor gene is due to an Alu sequence insertion. Cancer Res. 55:743-2745.


References

and other procarcinogens by cytochrome P450 enzyme in Salmonella typhimurium NM2009, Drug Metab. Dispos. 29:1176-1182.


References


References


