LIST OF FIGURES

Figure 1.1  Gas Insulated Substation ...........................................6

Figure 1.2  Load side voltage waveform during opening of Disconnector switch .................................................11

Figure 3.1:  Equivalent diagram of GIS used for the simulation........33

Figure 3.2:  Equivalent simulink model of 500 kV GIS system
when opening of DS-50543.........................................................36

Figure 3.3:  Voltage to ground of bus bar at 14S when opening
of DS-50543 for 500 kV GIS......................................................37

Figure 3.4:  Voltage to ground of bus bar at 17S when opening
of DS-50543 for 500 kV GIS......................................................37

Figure 3.5:  Voltage to ground of surge arrester at the end of
transformer Unit 3&4 when opening
of DS-50543 for 500 kV GIS......................................................38

Figure 3.6:  Voltage to ground of transformer at unit1 when
opening of DS-50543 for 500 kV GIS..............................................38

Figure 3.7:  Voltage to ground of transformer at unit4 when
opening of DS- 50543 for 500 kV GIS..........................................39

Figure 3.8:  Voltage to ground of bus-bar at 14S when opening
DS- 50543 for 750 kV GIS..........................................................40

Figure 3.9:  Voltage to ground of bus-bar at 17S when opening
DS-50543 for 750 kV GIS..........................................................41

Figure 3.10: Voltage to ground of surge arrester at the end of
transformer unit 3&4 when opening
DS-50543 for 750 kV GIS..........................................................41
Figure 3.11: Voltage to ground of transformer at unit 1 when
opening of DS-50543 for 750 kV GIS..........................42

Figure 3.12: Voltage to ground of transformer at unit 4 when
opening of DS-50543 for 750 kV GIS..........................42

Figure 3.13: Equivalent simulink model of GIS system when
opening of DS-50121..........................................................44

Figure 3.14: Voltage to ground of bus-bar at 14S when opening
of DS-50121 for 500 kV GIS............................................45

Figure 3.15: Voltage to ground of surge arrester at the end
of transformer unit1 when opening
DS-50121 for 500 kV GIS............................................45

Figure 3.16: Voltage to ground of transformer at unit 1
when opening of DS-50121 for 500 kV GIS......................46

Figure 3.17: Voltage to ground of bus-bar at 14S when opening of
DS-50121 for 750 kV GIS............................................47

Figure 3.18: Voltage to ground of surge arrester at the end
of transformer unit1 when opening
DS-50121 for 750 kV GIS............................................48

Figure 3.19: Voltage to ground of transformer at unit 1 when opening
of DS-50121 for 750 kV GIS............................................48

Figure 3.20: Equivalent simulink model of GIS system when
opening of DS-50121 but DS-50122 is closed...............50

Figure 3.21: Voltage to ground of bus-bar at 14S when opening of
DS-50121 but DS-50122 is closed for 500 kV GIS...........50

Figure 3.22: Voltage to ground of bus-bar at 17S when opening of
DS-50121 but DS-50122 is closed for 500 kV GIS...........51
Figure 3.23: Voltage to ground of surge arrester at end of transformer unit 3&4 when opening of DS-50121 but DS-50122 is closed for 500 kV GIS...

Figure 3.24: Voltage to ground of surge arrester at end of transformer unit 6 when opening of DS-50121 but DS-50122 is closed for 500 kV GIS...

Figure 3.25: Voltage to ground of transformer at unit 1 when opening of DS-50121 but DS-50122 is closed for 500 kV GIS...

Figure 3.26: Voltage to ground of transformer at unit 4 when opening of DS-50121 but DS-50122 is closed for 500 kV GIS...

Figure 3.27: Voltage to ground of bus-bar at 14S when opening of DS-50121 but DS-50122 is closed for 750 kV GIS...

Figure 3.28: Voltage to ground of bus-bar at 17S when opening of DS-50121 DS-50122 is closed for 750 kV GIS...

Figure 3.29: Voltage to ground of surge arrester at the end of transformer unit 3&4 for opening of DS-50121 but DS-50122 is closed for 750 kV GIS...

Figure 3.30: Voltage to ground of surge arrester at the end of transformer unit 6 when opening of DS-50121 but DS-50122 is closed for 750 kV GIS...

Figure 3.31: Voltage to ground of transformer at unit 1 when opening of DS-50121 but DS-50122 is closed for 750 kV GIS...
Figure 3.32: Voltage to ground of transformer at unit 4 when opening of DS-50121 but DS-50122 is closed for 750 kV GIS....56

Figure 3.33: Equivalent simulink model of GIS for influence of residual charges on VFTOS.................................58

Figure 3.34: Voltage to ground of bus bar at 14S when residual charge 1.0 p.u. is considered for 500kV GIS.................59

Figure 3.35: Voltage to ground of bus bar at 14S when residual charge 0.5 p.u. is considered for 500kV GIS..............60

Figure 3.36: Voltage to ground of bus bar at 14S when residual charge 1.0 p.u. is considered for 750kV GIS..............62

Figure 3.37: Voltage to ground of bus bar at 14S when residual charge 0 p.u. is considered for 750kV GIS..............62

Figure 3.38: Equivalent simulink model of influence of resistance on VFTOS.................................................................64

Figure 3.39: Voltage to ground of bus bar at 14S when spark resistance 0.1 Ω is considered for 500kV GIS...............65

Figure 3.40: Voltage to ground of bus bar at 14S when spark resistance 100 Ω is considered for 500kV GIS..........66

Figure 3.41: Voltage to ground of bus bar at 14S when spark resistance 0.1 Ω is considered for 750kV GIS..........68

Figure 3.42: Voltage to ground of bus bar at 14S when spark resistance 100 Ω is considered for 750kV GIS..........68

Figure 3.43: Equivalent simulink model of influence of entrance capacitance of transformer on VFTOS when DS-50543 opened......................................................71
Figure 3.44: Voltage to ground of transformer at unit 1 when entrance capacitance 5000pF is considered for 500kV GIS.............72

Figure 3.45: Voltage to ground of transformer at unit 1 when entrance capacitance 15000pF is considered for 500kV GIS.............72

Figure 3.46: Voltage to ground of transformer at unit 1 when entrance capacitance 5000pF is considered for 750kV GIS.............74

Figure 3.47: Voltage to ground of transformer at unit 1 when entrance capacitance 15000pF is considered for 750kV GIS.............74

Figure 3.48: Equivalent simulink model of influence of entrance capacitance of transformer on VFTOS when DS-50121 opened........................................................................76

Figure 3.49: Voltage to ground of transformer at unit 1 when entrance capacitance 5000pF is considered for 500kV GIS when DS-50121 is opened...............................................................77

Figure 3.50: Voltage to ground of transformer at unit 1 when entrance capacitance 15000pF is considered for 500kV GIS when DS-50121 is opened.....................................................77

Figure 3.51: Voltage to ground of transformer at unit 1 when entrance capacitance 5000pF is considered for 750kV GIS when DS-50121 is opened.....................................................79

Figure 3.52: Voltage to ground of transformer at unit 1 when entrance capacitance 15000pF is considered for 750kV GIS when DS-50121 is opened.....................................................79

Figure 4.1: Structure of 420 KV SF₆ / Air Capacitive Graded Bushing...........................................................................82
Figure 4.2: Equivalent layer representation of bushing. .......................... 85
Figure 4.3: Equivalent Π circuit .......................................................... 86
Figure 4.4: Impulse wave form ............................................................ 88
Figure 4.5: Equivalent Layer Representation for First Modelling circuit .......................................................... 90
Figure 4.6: First Modelling Circuit of 420 KV SF₆ / air capacitive graded bushing .......................................................... 91
Figure 4.7: Equivalent Layer Representation for Second Modelling Circuit .......................................................... 92
Figure 4.8: Second Modelling Circuit of 420 KV SF₆ / air capacitive graded bushing .......................................................... 93
Figure 4.9: Equivalent Layer Representation for third Modelling Circuit .......................................................... 95
Figure 4.10: Third Modelling Circuit of 420 KV SF₆ / air capacitive graded bushing .......................................................... 97
Figure 4.11: Termination of bushing with an overhead line .......... 98
Figure 4.12: Maximum Voltage drop across equivalent layers at 1ns rising pulse for first modelling circuits ........................................ 113
Figure 4.13: Variation of maximum voltage drop across equivalent layers for first modelling circuit ........................................ 114
Figure 4.14: Variation of maximum voltage drop across first equivalent layer for first modelling circuit .......... 115
Figure 4.15 Variation of maximum voltage drop across
first equivalent layer for second modelling circuit........116

Figure 4.16: Variation of maximum voltage drop across
   first equivalent layer for third modelling circuit ..........116

Figure 4.17: shows the maximum voltage drop across each
   equivalent layer for second modelling circuit ...............117

Figure 4.18: Variation of maximum voltage drop across
   equivalent layers for second modelling circuit .............118

Figure 4.19: Maximum Voltage drop across equivalent layer for
   third modelling circuit at 1ns rising pulse .................119

Figure 4.20: Variation of maximum voltage drop across
   equivalent layers for third modelling circuit ..............120

Figure 4.21 Maximum voltage drop across first equivalent
   layer of each modelling circuit
   (normalized to first modelling circuit).....................121

Figure 4.22: Maximum Voltage drop across first equivalent
   layer when first modelling circuit is terminated
   with overhead line equivalent..............................122

Figure5.1: Cross section of a typical GIS system................124
Figure5.2: Inner conductor and outer enclosure of GIS..........125
Figure5.3: Equivalent circuit of insulating flange.............130
Figure5.4: Figure of the analyzed line feeder bay=E15........130
Figure5.5: Basic circuit with flange height variation (h=1m, 2m, 3m)..134
Figure5.6: Transient voltages across flange with height of flange
   h=1m..................................................................134
Figure 5.7: Transient voltages across flange with height of flange h=2m………………………………………………………………….135

Figure 5.8: Transient voltages across flange with height of flange h=3m………………………………………………………………….135

Figure 5.9: Basic circuit with flange length variation (L=0.5m, 1m, 2m……………………………………………………………137

Figure 5.10: Transient voltages across flange with length of flange l=0.5m ……………………………………………….….137

Figure 5.11: Transient voltages across flange with length of flange l=1m ……………………………………………………………138

Figure 5.12 Transient voltages across flange with length of flange l=2m …………………………………………………………………..138

Figure 5.13: Basic circuit with copper strips across flange…………….140

Figure 5.14: Suppression of transient voltages across flange with two copper strips (0.5uH each) …………………………………….140

Figure 5.15: Suppression of transient voltages across flange with two copper strips (0.1uH each)…………………………….140

Figure 5.16: Suppression of transient voltages across flange with four copper strips (0.5uH each)………………………….141

Figure 5.17: Suppression of transient voltages across flange with four copper strips (0.1uH each)……………………………141

Figure 5.18 Basic circuit with capacitors across flange………………….143

Figure 5.19 Suppression of transient voltages across Flange with capacitor 0.001uF…………………………………………143

Figure 5.20 Suppression of transient voltages across Flange with capacitor 0.003uF…………………………………………144

Figure 5.21: Suppression of transient voltages across Flange with two capacitors 0.001uF………………………………….144
Figure 5.22: Suppression of transient voltages across Flange with two Capacitors 0.003uF………………………………………..145

Figure 5.23: Basic circuit with copper strips across enclosure………………147

Figure 5.24: Suppression of transient voltages across Flange with two copper strips connected across enclosure (0.3uH)….147

Figure 5.25: Suppression of transient voltages across Flange with two copper strips connected across enclosure (0.1uH)…147

Figure 5.26: Suppression of transient voltages across Flange with four copper strips connected across enclosure (0.3uH)…148

Figure 5.27: Suppression of transient voltages across Flange with four copper strips connected across enclosure (0.1uH)…148

Figure 5.28: Suppression of transient voltages across Enclosure with two copper strips connected across enclosure (0.1uH)…148

Figure 5.29: Suppression of transient voltages across Enclosure with two copper strips connected across enclosure (0.1uH)….149

Figure 5.30: Suppression of transient voltages across Enclosure with four copper strips connected across enclosure (0.3uH)…149

Figure 5.31: Suppression of transient voltages across Enclosure with four copper strips connected across enclosure (0.1uH)….149

Figure 5.32: Basic circuit with capacitors across enclosure…………………151

Figure 5.33: Suppression of transient voltages across flange with 0.001uF capacitor connected across enclosure…………………151

Figure 5.34: Suppression of transient voltages across flange with 0.003uF capacitor connected across enclosure………………..152

Figure 5.35: Suppression of transient voltages across flange with two capacitors connected across enclosure (0.001uF each)………………152

Figure 5.36: Suppression of transient voltages across flange with two capacitors connected across enclosure (0.003uF each)……………………………………………………………………..152
Figure 5.37: Suppression of transient voltages across enclosure with 0.001uF capacitor connected across enclosure.............153

Figure 5.38: Suppression of transient voltages across enclosure with 0.003uF capacitor connected across enclosure.............153

Figure 5.39: Suppression of transient voltages across enclosure with two capacitors connected across enclosure (0.001uF each).............................................................................153

Figure 5.40: Suppression of transient voltages across enclosure with two capacitors connected across enclosure (0.003uF each).....................................................................................140

Figure 6.1: The schematic diagram of the GIS section.........................157

Figure 6.2: Cross section of a typical GIS system..................................159

Figure 6.3: The completed 123 KV GIS configuration.............................160

Figure 6.4: Fig of the analyzed line feeder bay E15.................................161

Figure 6.5: Basic circuit of the line feeder bay........................................171

Figure 6.6: VFTOS’s across secondary circuit of current transformer...172

Figure 6.7: VFTOS’s across secondary circuit of potential transformer.........................................................................................................................173

Figure 6.8: VFTOS’s across secondary circuit of current transformer.........................................................................................................................173

Figure 6.9: VFTOSs across secondary circuit of potential transformer.........................................................................................................................174

Figure 6.10: VFTOS’s across secondary circuit of current transformer.........................................................................................................................174

Figure 6.11: VFTOS’s across secondary circuit of potential transformer.........................................................................................................................175

Figure 6.12: VFTOS’s across secondary circuit of current transformer.........................................................................................................................176

Figure 6.13: VFTOSs across secondary circuit of potential transformer.........................................................................................................................176

Figure 6.14: VFTOSs across secondary circuit of Current transformer (c1=1pF, c2=300pF).....................................................................................177

Figure 6.15: VFTOSs across secondary circuit of Potential transformer (c1=1pF, c2=300pF).....................................................................................177
Figure 6.16: VFTOS’s across secondary circuit of Current transformer
   \( c_1=5\text{pF}, c_2=300\text{pF} \) ..................................................178

Figure 6.17: VFTOS’s across secondary circuit of potential transformer
   \( c_1=5\text{pF}, c_2=300\text{pF} \) ..................................................178

Figure 6.18: VFTOS’s across secondary circuit of Current transformer
   \( c_1=10\text{pF}, c_2=300\text{pF} \) ..................................................178

Figure 6.19: VFTOS’s across secondary circuit of Potential transformer
   \( c_1=10\text{pF}, c_2=300\text{pF} \) ..................................................179

Figure 6.20: VFTOSs across secondary circuit of Current transformer
   \( c_1=1\text{pF}, c_2=500\text{pF} \) ..............................................180

Figure 6.21: VFTOSs across secondary circuit of Potential transformer
   \( c_1=1\text{pF}, c_2=500\text{pF} \) ..............................................180

Figure 6.22: VFTOSs across secondary circuit of Current transformer
   \( c_1=1\text{pF}, c_2=700\text{pF} \) ..............................................180

Figure 6.23: VFTOSs across secondary circuit of potential transformer
   \( c_1=1\text{pF}, c_2=700\text{pF} \) ..............................................181

Figure 6.24: VFTOSs across secondary circuit of current transformer..........................182

Figure 6.25: VFTOSs across secondary circuit of potential transformer..........................182

Figure 6.26: VFTOSs across secondary circuit of current transformer..........................183

Figure 6.27: VFTOSs across secondary circuit of potential transformer..........................183

Figure 6.28: VFTOSs across secondary circuit of potential transformer..........................183
Figure 6.29: VFTOS’s across secondary circuit of potential transformer..........................183

Figure 6.30: Simulink modeled circuit for addition of one pi-section.................................185

Figure 6.31: VFTOS’s across secondary circuit of one pi-section current transformer..........186

Figure 6.32: VFTOSs across secondary circuit of one pi-section potential transformer........186

Figure 3.33: Simulink modeled circuit for addition of two pi-sections.............................187

Figure 6.34: VFTOS’s across secondary circuit of two pi-sections current transformer........187

Figure 6.35: VFTOS’s across secondary circuit of two pi-sections potential transformers.....187

Figure 6.36: Simulink modeled circuit for addition of three pi-sections............................188

Figure 6.37: VFTOSs across secondary circuit of three pi-section current transformers......188

Figure 6.38: VFTOS’s across secondary circuit of three pi-section potential transformers...189
LIST OF TABLES

Table 3.1: Characteristics of 420 kV surge arrester.................................30
Table 3.2: Characteristics of 444 kV surge arrester.................................31
Table 3.3: Values of VFTOS at different points in 500kV GIS when
  opening of DS-50543........................................................................39
Table 3.4: Values of VFTOS at different points in 750kV GIS when
  opening of DS-50543........................................................................43
Table 3.5: Values of VFTOS at different points in 500kV GIS when
  opening of DS-50121........................................................................46
Table 3.6: Values of VFTOS at different points in 750kV GIS when
  opening of DS-50121........................................................................49
Table 3.7: Values of VFTOS at different points in 500kV GIS when
  opening of DS-50121 but DS-50122 is closed.................................53
Table 3.8: Values of VFTOS at different points in 750kV GIS when
  opening of DS-50121 but DS-50122 is closed.................................57
Table 3.9: Values of Residual charges.....................................................58
Table 3.10: Simulation result of residual charges influence on
  VFTOS at bus bars in 500kV GIS0.....................................................60
Table 3.11: Simulation result of residual charges influence on
  VFTOS at Transformers in 500kV GIS.................................................61
Table 3.12: Simulation result of residual charges influence on
  VFTOS at bus bars in 750kV GIS.......................................................62
Table 3.13: Simulation result of residual charges influence on
  VFTOS at Transformers in 750kV GIS.................................................63
Table 3.14: Simulation result of spark resistance influence on
  VFTOS at bus bars in 500kV GIS.......................................................66
Table 3.15: Simulation result of spark resistance influence on VFTOS at transformers in 500kV GIS...............................67

Table 3.16: Simulation result of spark resistance influence on VFTOS at bus bars in 750kV GIS........................................69

Table 3.17: Simulation result of spark resistance influence on VFTOS at transformers in 750kV GIS...............................69

Table 3.18: Simulation result of entrance capacitance influence on VFTOS at transformers in 500kV GIS when DS-50543 opened.................................................................73

Table 3.19: Simulation result of entrance capacitance influence on VFTOS at transformers in 750kV GIS when DS-50543 opened.................................................................75

Table 3.20: Simulation result of entrance capacitance influence on VFTOS at transformers in 500kV GIS when DS-50121 opened.................................................................78

Table 3.21: Simulation result of entrance capacitance Influence on VFTOS at transformers in 750kV GIS when DS-50121 opened.................................................................80

Table 4.1: Electrical Parameters of Each Equivalent Layer for the First modeling circuits.................................................91

Table 4.2: Electrical Parameters of Each Equivalent Layer for the Second modeling circuit.................................94

Table 4.3: Electrical Parameters of Each Equivalent Layer for the Third modelling Circuit........................................96
Table 4.4: Voltage drop across first equivalent layer for first modelling circuit at 1ns rising pulse.................100

Table 4.5: Maximum voltage drop across first equivalent layer for first modelling circuit........................101

Table 4.6: The maximum voltage drop across equivalent layers for first modelling circuit at 1ns rising pulse....101

Table 4.7 Voltage drop across equivalent layers for 1ns (for I modeling circuit) ..............................102

Table 4.8: The voltage drop across first equivalent layer for second modelling circuit at 1ns rise time pulse......................103

Table 4.9: Maximum voltage drop across first equivalent layer for second modelling circuit..............104

Table 4.10: Maximum voltage drop across equivalent layers for second modelling circuit at 1ns rising pulse........105

Table 4.11: Voltage drop across equivalent layers for 1ns (for IIInd modeling circuit) .........................106

Table 4.12: Voltage drop across first equivalent layer for third modelling circuit at 1ns rising pulse.......................107

Table 4.13: Maximum voltage drop across first equivalent layer for third modelling circuit......................108

Table 4.14: Maximum voltage drop across equivalent layers for third modelling circuit at 1ns rising pulse........109
Table 4.15: Voltage drop across equivalent layers for 1ns
(for IIIrd modeling circuit) .........................110

Table 4.16: Maximum voltage drop across first equivalent layer for first modelling circuit with overhead line.........................112

Table 5.1 Transient voltages across flange with increasing of flange height.........................133

Table 5.2 Transient voltages across flange with decreasing of flange length.........................136

Table 5.3 Comparison of transient voltages across flange with and without copper strips.........................139

Table 5.4 Comparison of transient voltages across flange with and without Capacitors.........................142

Table 5.5 Comparison of transient voltages across flange and enclosure with and without copper strips across them.........................145

Table 5.6 Comparison of transient voltages across flange and enclosure with and without Capacitors across them.........................150

Table 6.1 Equivalent Circuit of Current Transformer.....164
Table 6.2 Equivalent Circuit of Potential Transformer.....164

Table 6.3 Equivalent Circuits Of the GIS Components....165

Table 6.4 Transient voltages across CT & PT for different cable lengths.........................................................170

Table 6.5 Transient voltages across CT & PT for different values of C1 and C2.........................................................176

Table 6.6 Transient voltages across CT & PT for change in burden....179
Table 6.7 Transient voltages across CT & PT for change in length of GIS section.........................................................184