List of Tables

3.1 The calculated preformation probability P_0 and penetrability P using PCM, for various clusters with 208Pb as the daughter product, for cases of spherical, β_2 alone, and (β_2, β_3 and β_4) deformed nuclei, and “optimum” orientations. ... 54

3.2 Half-life times and other characteristic quantities for cluster decays of various parent nuclei. The calculations are made for use of the Preformed Cluster Model (PCM) of Gupta and collaborators [17–19, 79], for cases of spherical, β_2 alone and (β_2, β_3 and β_4) deformed nuclei, and “optimum” orientations of cold decay process [48]. The impinging frequency $\nu_0 \sim 10^{21}$ s$^{-1}$, fixed for each case. Q_{MN} refers to Q-value calculated by using the binding energies of Möller et al. [52]. .. 58

3.3 The cluster-decay half-lives for some best preformed clusters in the neighborhood of 34Si from 238U, calculated on Preformed Cluster Model (PCM) of Gupta et al. [17–19, 79] by using the Q-values (Q_{MN}) based on binding energies from Möller et al. [52]. The experimental data is known only for 34Si decay of 238U [92].......................... 61

4.1 Calculated fusion-evaporation cross-sections σ_{Cal}^{Cal} due to LPs, compared with the experimental σ_{Exp} data of Ref. [95]. Also tabulated are the calculated IMF cross-sections σ_{IMF}^{Cal} and HMF cross-sections σ_{HMF}^{Cal} due to light-mass and heavy-mass windows, the symmetric-fission component σ_{SF}^{Cal}, and their sum, the fusion-fission cross-section σ_{ff}^{Cal}, compared with the CASCADE data of Ref. [95], $\sigma_{ff}^{CASCADE}$. The zeros in the last column are as quoted in [95]. In DCM calculations, Light, Heavy, and SF windows refer, respectively, to $A_2=5-20$ and 40-50 and (A/2)±20. The neck-length parameter ΔR used for LP’s and fusion-fission (=IMFs+HMFs+SF) are different as are determined in Fig. 4.9 by fitting the experimental σ_{Exp} in Fig. 4.8 and CASCADE $\sigma_{ff}^{CASCADE}$ in Fig. 4.11................................. 74
4.2 Calculated fusion-evaporation cross-sections $\sigma_{\text{cal.}}^{\text{expt}}$ due to LPs, compared with the experimental $\sigma_{\text{expt.}}^{\text{expt.}}$ data of Ref. [104]. The neck-length parameter ΔR used for LPs is determined in Fig. 4.17 by fitting the experimental $\sigma_{\text{cal.}}^{\text{expt.}}$ in Fig. 4.16. Also heavy fragments are predicted at four higher energies in the form of three windows namely: IMFs cross-sections $\sigma_{\text{IMF}}^{\text{IMF}}(A_2=5-16)$, HMFs cross-sections $\sigma_{\text{HMF}}^{\text{HMF}}(A_2=33-41)$ and the symmetric-fission component $\sigma_{\text{SF}}^{\text{SF}}$, $((A/2)\pm7)$ and their sum $\sigma_{\text{f}}^{\text{f}}$ fusion-fission cross-section. Clear formation of theses windows is shown in Fig. 4.18.

5.1 Calculated fusion-evaporation cross-sections $\sigma_{\text{cal.}}^{\text{expt.}}$ of LPs ($1 \leq Z \leq 2$, A=2-4 for 114,116Ba* and 5 for 118,120,122Ba*), compared with the experimental $\sigma_{\text{expt.}}^{\text{expt.}}$ $\sigma_{\text{cal.}}^{\text{expt.}}$ ($6 \leq Z \leq 28$) data of Ref. [101]. Also listed are the calculated IMFs cross-sections $\sigma_{\text{IMF}}^{\text{IMF}}(Z=3-5)$, which is not observed experimentally. $\sigma_{\text{IMF}}^{\text{IMF}}$ and HMFs cross-sections $\sigma_{\text{HMF}}^{\text{HMF}}$ due to light-mass and heavy-mass fragments, the near symmetric-fission component $\sigma_{\text{SF}}^{\text{SF}}$, the symmetric-fission component $\sigma_{\text{SF}}^{\text{SF}}$, and their sum, the fusion-fission cross-section $\sigma_{\text{ff}}^{\text{ff}}$ ($=\sigma_{\text{IMF}}^{\text{IMF}}+\sigma_{\text{HMF}}^{\text{HMF}}+\sigma_{\text{SF}}^{\text{SF}}+\sigma_{\text{SF}}^{\text{SF}}$), compared with the experimental fusion-fission cross-section $\sigma_{\text{ff}}^{\text{ff}}$ ($6 \leq Z \leq 28$) data of Ref. [100], also the total cross-section calculated on DCM $\sigma_{\text{cal.1}}^{\text{expt.}}$ ($=\sigma_{\text{expt.}}^{\text{expt.}}+\sigma_{\text{ff}}^{\text{ff}}$) is compared with total experimental cross-section $\sigma_{\text{total}}^{\text{expt.}}$ ($=\sigma_{\text{expt.}}^{\text{expt.}}+\sigma_{\text{f}}^{\text{f}}$ ($Z=6-28$)). In DCM calculations, IMFs, HMFs, nSF and SF windows are described separately for different CN in the literature. The neck-length parameter ΔR used for different regions are different as are determined in Fig. 5.3 by fitting the experimental $\sigma_{\text{expt.}}^{\text{expt.}}$.

ix