LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparative evaluation of different processing techniques</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical composition (wt %) of 7075 Al alloy</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters of CNC Turning Machine</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Details of inserts and tool holders</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Experimental Data of Dependent Parameters for Varying Cutting Speed</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Experimental Data of Dependent Parameters for Varying Feed</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Experimental Data of Dependent Parameters for Varying Depth of cut</td>
<td>65</td>
</tr>
<tr>
<td>4.7</td>
<td>Process parameters with their values at three levels</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Components of Central Composite Second Order Rotatable Design</td>
<td>71</td>
</tr>
<tr>
<td>4.9</td>
<td>Analysis of Variance</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>Face centered central composite design for four variables at three levels</td>
<td>79</td>
</tr>
<tr>
<td>4.11</td>
<td>Experimental Results – Composite 1 [AA7075/10 wt % SiC (10-20µm)]</td>
<td>80</td>
</tr>
<tr>
<td>4.12</td>
<td>Experimental Results – Composite 2 [AA7075/15 wt % SiC (10-20µm)]</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>Experimental Results – Composite 3 [AA7075/10 wt % SiC (20-40µm)]</td>
<td>82</td>
</tr>
<tr>
<td>4.14</td>
<td>Experimental Results – Composite 4 [AA7075/15 wt % SiC (20-40µm)]</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Weight percentage of different elements during EPMA</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Atomic percentage of different elements during EPMA</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Compounds identified in XRD of 10 wt % SiC (10-20 µm) composite</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Compounds identified in XRD of 15 wt % SiC (10-20 µm) composite</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Compounds identified in XRD 10 wt % SiC composite (20-40µm)</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Compounds identified in XRD 15 wt % SiC composite (20-40µm)</td>
<td>110</td>
</tr>
</tbody>
</table>
5.7(a) Values of Young’s Modulus (GPa) for 7075 Al alloy
5.7(b) Values of Young’s Modulus (GPa) for 10%SiC (20-40µm) composite
5.7(c) Values of Young’s Modulus (GPa) for 15%SiC (20-40µm) composite
5.8(a) Values of Peak Frequency (Hz) for 7075 Al alloy
5.8(b) Values of Peak Frequency (Hz) for 10%SiC (20-40µm) composite
5.8(c) Values of Peak Frequency (Hz) for 15%SiC (20-40µm) composite
5.9 Variation of Tensile Strength of AA7075/SiC composites with wt% of SiC
5.10 Variation of Tensile Strength of AA7075/SiC composites with SiC particle size
5.11 Variation of Hardness of AA7075/SiC composites with wt% of SiC
5.12 Variation of Hardness of AA7075/SiC composites with SiC particle size
5.13 Compression values of 7075 Al alloy and AA7075/10 wt% SiC composite
6.1.1 (a) Selection of Adequate Model for Surface Roughness
6.1.1 (b) Selection of Adequate Model for Tangential Force
6.1.1 (c) Selection of Adequate Model for Feed Force
6.1.1 (d) Selection of Adequate Model for Radial Force
6.1.1 (e) Selection of Adequate Model for Power Consumption
6.1.1 (f) Selection of Adequate Model for Flank Wear
6.1.1 (g) Selection of Adequate Model for Crater Wear
6.1.1 (h) Selection of Adequate Model for Tool life
6.1.2 (a) Pooled ANOVA-Surface Roughness
6.1.2 (b) Pooled ANOVA-Tangential force
6.1.2 (b) Pooled ANOVA-Feed force
6.1.2 (b) Pooled ANOVA-Radial force
6.1.2 (b) Pooled ANOVA-Power Consumption
6.1.2 (b) Pooled ANOVA-Flank Wear
6.1.2 (b) Pooled ANOVA-Crater Wear
6.1.2 (b) Pooled ANOVA-Tool life
6.2 Validation of Face Centered Central Composite Design 207
6.3 Type of chips –Composite 4 222
7.1 Constraints Used for Optimization of Process Parameters during Turning of Composite 1 230
7.2 Constraints Used for Multi Optimization of Process Parameters during Turning of Composite 1 244
7.3 Multi Objective optimum Solution for Composite 1 246
7.4 Constraints Used for Multi Objective Optimization of Process Parameters during Turning of Composite 2 249
7.5 Multi Objective optimum Solution for Composite 2 250
7.6 Constraints Used for Multi Objective Optimization of Process Parameters during Turning of Composite 3 253
7.7 Multi Objective optimum Solution for Composite 3 254
7.8 Constraints Used for Multi Objective Optimization of Process Parameters during Turning of Composite 4 257
7.9 Multi Objective optimum Solution for Composite 4 258
8.1 Recommended values of cutting conditions (process parameters) for composite 1 339
8.2 Recommended values of cutting conditions (process parameters) for composite 2 340
8.3 Recommended values of cutting conditions (process parameters) for composite 3 340
8.4 Recommended values of cutting conditions (process parameters) for composite 4 341
A-1 to A-8 Selection of adequate models/ composite 2 364 to 371
A-9 to A-16 Pooled ANOVA 372 to 379
B-1 to B-8 Selection of adequate models/ composite 3 380 to 387
B-9 to B-16 Pooled ANOVA 388 to 395
C-1 to C-8 Selection of adequate models/ composite 4 396 to 403
C-9 to C-16 Pooled ANOVA 404 to 411
D 1 constraints used for optimization of process parameters/ composite 2 412
D 2 to D 9 Single response optimization solutions of responses 413 to 416
E 1 constraints used for optimization of process parameters/ composite 3 417
E 2 to E 9 Single response optimization solutions of responses 418 to 421
F 1 constraints used for optimization of process parameters/ composite 4 422
F 2 to F 9 Single response optimization solutions of responses 423 to 427