CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT iii
NOMENCLATURE ix
DETAILS ON PATENT APPLIED x
CONTENTS xvi
LIST OF TABLES xxv
LIST OF FIGURES xxx

CHAPTER 1 INTRODUCTION 1
1.1 GENERAL 1
1.2 TWIN ROLL CASTING 3
 1.2.1 Twin Roll Casting Process 3
 1.2.2 Advantages and Disadvantages of Direct Strip Casting of
 Aluminum 6
 1.2.3 Economic Viability of Strip Casting 7
 1.2.4 Energy and Environmental Considerations 8
1.3 Metal Matrix Composites 8
 1.3.1 History of Composites 9
 1.3.2 Reinforcements 10
1.4 Thesis Presentation 10

CHAPTER 2 LITERATURE SURVEY 11
2.0 INTRODUCTION 11
2.1 CONTINUOUS CASTING PROCESS FOR ALUMINIUM STRIP 11
 2.1.1 Wheel and Belt Machines 12
 2.1.2 Twin Belt Casters 15
 2.1.3 Twin Roll Casters 18
 2.1.4 Continuous Casting Process 21
2.2 ALUMINIUM AND ITS ALLOYS 24
 2.2.1 Metallurgy of Aluminium Alloys 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Alloying Elements in Aluminium</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Classification and key Aluminium Grades</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4 Alloys Amenable to Direct Strip Casting</td>
<td>27</td>
</tr>
<tr>
<td>2.3 GENERAL PROPERTIES OF ALUMINIUM</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 Density</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2 Corrosion Resistance</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3 Electrical Conductivity</td>
<td>31</td>
</tr>
<tr>
<td>2.3.4 Specific Heat</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5 Tensile Strength</td>
<td>31</td>
</tr>
<tr>
<td>2.3.6 Low Temperature Toughness</td>
<td>32</td>
</tr>
<tr>
<td>2.4 ALUMINIUM ALLOYS AND STRIP CASTING</td>
<td>32</td>
</tr>
<tr>
<td>2.5 SOLIDIFICATION IN THE TWIN ROLL CASTING PROCESS</td>
<td>35</td>
</tr>
<tr>
<td>2.5.1 Cellular and Dendritic Growth</td>
<td>36</td>
</tr>
<tr>
<td>2.5.2 Microstructure of Aluminium Cast Strip</td>
<td>36</td>
</tr>
<tr>
<td>2.6 HOT ROLLING IN THE TWIN ROLL CASTING PROCESS</td>
<td>37</td>
</tr>
<tr>
<td>2.6.1 The Forces Acting in the Region of Contact between the Material and the Rolls</td>
<td>40</td>
</tr>
<tr>
<td>2.6.2 Forward Slip and Backward Slip</td>
<td>42</td>
</tr>
<tr>
<td>2.6.3 Stress Distribution</td>
<td>43</td>
</tr>
<tr>
<td>2.6.4 Deformation</td>
<td>46</td>
</tr>
<tr>
<td>2.7 TWIN ROLL CASTING DEFECTS AND STRIP CASTABILITY</td>
<td>48</td>
</tr>
<tr>
<td>2.7.1 Center Line Segregation</td>
<td>48</td>
</tr>
<tr>
<td>2.7.2 Heat Lines</td>
<td>50</td>
</tr>
<tr>
<td>2.7.3 Sticking</td>
<td>53</td>
</tr>
<tr>
<td>2.7.4 Strip Castability</td>
<td>53</td>
</tr>
<tr>
<td>2.8 HISTORY OF COMPOSITES</td>
<td>54</td>
</tr>
<tr>
<td>2.8.1 General Aspects of Composites</td>
<td>60</td>
</tr>
<tr>
<td>2.8.2 Matrix</td>
<td>61</td>
</tr>
<tr>
<td>2.8.3 Reinforcement</td>
<td>62</td>
</tr>
<tr>
<td>2.9 METAL MATRIX COMPOSITES (MMCS)</td>
<td>63</td>
</tr>
<tr>
<td>2.9.1 Properties of MMCs</td>
<td>65</td>
</tr>
</tbody>
</table>
5.1 DESIGN AND DEVELOPMENT OF TWIN ROLL CASTING AND ALLIED FACILITIES

5.1.1 Shell Making Machine and Pouring Basin

5.1.2 Pouring Basin Made Out of Carbon-di-Oxide Moulding

5.1.3 Melting Facilities

5.2 MATERIAL USED

5.2.1 Matrix Metal Aluminium Alloy Specification

5.2.2 Reinforcement Material Silicon Carbide

5.2.3 Borax

5.2.4 Releasing Agent for Rolled Aluminium Strips

5.3 TWIN ROLL CASTING STRIP MAKING PROCESS

5.3.1 Strip Making Procedure

5.3.1.1 Quantity of Aluminium Ingot

5.3.1.2 Charge into the Crucible

5.3.1.3 Melt the Charge in the Furnace

5.3.1.4 Measure the Temperature of the Melt

5.3.1.5 Spacing between the Rollers

5.3.1.6 Preheating of the Rollers

5.3.1.7 Placing the Shell Mould Pouring Basin above the Rollers

5.3.1.8 Production of Strips

5.4 PREPARATIONS OF METAL MATRIX COMPOSITE STRIPS

5.5 STANDARDIZATION AND OPTIMIZATION OF TWIN ROLL CASTING PARAMETERS

5.5.1 Standardization of Twin Roll Caster Functional Parameters

5.5.2 Critical Parameters Standardization

5.6 TESTING OF TWIN ROLL STRIPS
5.6.1 The Examination of Physical Nature of the Twin Rolled Strips

5.6.1.1 Twin Roll Cast Strip Width Measurement

5.6.1.2 Measurement of Strip Thickness

5.6.1.3 Examination of Defects in the Rolled Strips

5.6.2 Evaluations of Mechanical Properties

5.6.2.1 Tensile Test Specimen Location

5.6.2.2 Measurement of Hardness of Twin Rolled Strip

5.6.2.3 Microstructure Studies

5.5.2.1.1 Specimen Preparation for Microstructural Studies

5.5.2.1.2 Microstructural Study of Unetched Specimens

5.5.2.1.3 Measurement of Primary and Secondary Dendrite Arm Spacing

5.7 PREPARATION OF MMCs

CHAPTER 6 RESULTS AND DISCUSSION

6.0 INTRODUCTIONS

6.1 RESULTS ON DESIGN AND DEVELOPMENT OF TWIN ROLL CASTING MACHINE

6.1.1 Determination of Proper Twin Roller Speed

6.1.2 Effect of Alloy Change on Twin Roller Speed

6.1.3 Optimization of Control of Flow of Liquid Metal Using Shell Core Pouring Basin

6.1.4 Selection of Vertical Rolling or Angular Rolling Twin Roller Casting Machine

6.1.5 The Final Twin Rolled Casting Parameters

6.2 EVALUATION OF PHYSICAL CHARACTERISTICS OF TWIN ROLLED CAST STRIPS

6.2.1 Physical Parameter – Strip Width
6.2.1.1 Strip Width when Pouring Temperature of Liquid Melt is 670 °C 180
6.2.1.2 Strip Width when Pouring Temperature of Liquid Melt is 680 °C 180
6.2.1.3 Strip Width when Pouring Temperature of Liquid Melt is 690 °C 194
6.2.1.4 Strip Width when Pouring Temperature of Liquid Melt is 700 °C 194
6.2.2 Physical Parameters – Thickness of Edges 203
6.2.2.1 Strip Thickness when Pouring Temperature of Liquid Melt is 670 °C 203
6.2.2.2 Strip Thickness when Pouring Temperature of Liquid Melt is 680 °C 210
6.2.2.3 Strip Thickness when Pouring Temperature of Liquid Melt is 690 °C 217
6.2.2.4 Strip Thickness when Pouring Temperature of Liquid Melt is 700 °C 217
6.3 EVALUATION OF TWIN ROLLED STRIP MECHANICAL PROPERTIES 226
6.3.1 Effect of Rolling Speed on Ultimate Tensile Strength of Twin Rolled Strips 226
6.3.1.1 Effect of Rolling Speed on UTS of Twin Rolled Strips Poured at 670 °C 227
6.3.1.2 Effect of Rolling speed on UTS of twin Rolled strips Poured at 680 °C 227
6.3.1.3 Effect of Rolling Speed on UTS of Twin Rolled Strips Poured at 690 °C 227
6.3.1.4 Effect of Rolling Speed on UTS of Twin Rolled Strips Poured at 700 °C 231
6.3.2 Effect of Rolling Speed on % Elongation of Twin Rolled Strips 231
6.3.2.1 Effect of Rolling Speed on % Elongation of Twin Rolled Strips Poured at 670 °C

6.3.2.2 Effect of Rolling Speed on % Elongation of Twin Rolled Strips Poured at 680 °C

6.3.2.3 Effect of Rolling Speed on % Elongation of Twin Rolled Strips Poured at 690 °C

6.3.2.4 Effect of Rolling Speed on % Elongation of Twin Rolled Strips Poured at 700 °C

6.3.3 Effect of Rolling Speed on BHN of Twin Rolled Strip

6.3.3.1 Effect of Rolling Speed on BHN of Twin Rolled Strips Poured at 670 °C

6.3.3.2 Effect of Rolling Speed on BHN of Twin Rolled Strips Obtained at 680 °C

6.3.3.3 Effect of Rolling Speed on BHN of Twin Rolled Strips Obtained at 690 °C

6.3.3.4 Effect of Rolling Speed on BHN of Twin Rolled Strips Obtained at 700 °C

6.4 COMPARISON OF PROPERTIES

6.4.1 The Role of Roller Speed and Pouring Temperature of Liquid Melt on the Formation of Twin Rolled Strips

6.4.2 Comparison of Physical Characteristics of Twin Rolled Strips Produced at 670 °C, 680 °C, 690 °C and 700 °C.

6.4.2.1 Effect of Pouring Temperature on Strip Width

6.4.2.2 Effect of Pouring Temperature on Thickness of the Strip

6.4.2.3 Comparison of UTS at Different Pouring Temperature

6.4.2.4 Effect of Pouring Temperature on % Elongation

6.4.2.5 Effect of Pouring Temperature on Brinell Hardness

6.5 STUDIES ON ALUMINIUM SIC METAL MATRIX COMPOSITE STRIPS MADE BY TWIN ROLL CASTER
6.5.1 Evaluation of Physical Characteristics of Twin Rolled Al-SiC MMC Strip

6.5.1.1 Influence of Quantity of SiC on Strip Width of Twin Rolled Strips Poured at 680 °C and rolled at 10 rpm

6.5.1.2 Influence of Quantity of SiC on Strip Thickness of Twin Rolled Strips Poured at 680 °C and at 10 Roller rpm

6.5.2 Evaluation Of Mechanical Properties Of Aluminium SiC MMC Composite Strip Poured At 680 °C and 10 Rpm

6.5.2.1 Evaluation of Ultimate Tensile Strength of Twin Rolled Aluminium Silicon Carbide Metal Matrix Composite Strip Poured at 680 °C and at Roller rpm of 10

6.5.2.2 Evaluation of % Elongation of Twin Rolled Aluminium Silicon Carbide Metal Matrix Composite Strip Poured at 680 °C and 10 rpm

6.5.2.3 Evaluation Of Hardness Of Twin Rolled Aluminium Silicon Carbide Metal Matrix Composite Strip

6.5.3 Comparison of Properties

6.5.3.1 Comparison of Mechanical Properties at Different Grades of SiC Addition to Aluminium Metal Matrix Composite Strips Twin Rolled at 680 °C and 10 rpm

6.5.3.1.1 Comparison of UTS at Different Grades of Addition SiC to Aluminium Metal Matrix Composite Strips Twin Rolled at 680 °C and 10 Rpm

6.5.3.1.2 Comparison of % Elongation at Different Grades of SiC Addition to Aluminium Metal Matrix Composite Strips Twin Rolled at 680 °C and 10 rpm

6.5.3.1.3 Comparison of Hardness at Different Grades of SiC Addition to Aluminium Metal
Matrix Composite Strips Twin Rolled at 680 °C
and 10 rpm

CHAPTER 7 CONCLUSIONS

7.1 TWIN ROLL CASTING PARAMETERS 286
7.2 STRIP PHYSICAL CHARACTERISTICS 287
7.3 MECHANICAL PROPERTIES 287
7.4 TWIN ROLLED ALUMINIUM SILICON CARBIDE MMC STRIPS 288
7.5 CONCLUSION SUMMARY 289

REFERENCES 290

xxiv