<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Processing of aluminium alloys</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Vertical direct strip casting process set up</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Types of moving- mould casting machine. (a) and (b) wheel and belt casters, (c) and (d) twine belt caster, (e) and (f) twin roll caster</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The basic layout of wheel and belt type casting machines. (a) Properzi, (b) Rigamonti, and (c) Aluminium Laboratories</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic arrangement of the Hazelett machine</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic diagram of the Hunter- Douglas machine</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>General arrangement of the twin-roll caster</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The overall principle of the twin roll casting process</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Main components of a continuous casting strand</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Commercial Al-Mg alloys and their associated freezing range</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Estimated total investment costs (1970) for plants producing 7mm strip by conventional and strip-cast routes</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>The as-cast green structure of Al-Mn alloy strip of ¼ inch thick. (a) and (b) not refined, transverse and longitudinal, (c) refined, longitudinal</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Freezing rate/ dendrite arm spacing relationship for 3004 and Al-4.5%, cu-2.0%Mn alloys and for several casting processes</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Variation in cell spacing across the strip thickness. Alloy Al-0.5wt% Fe- 0.2wt % si</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Forces acting between the rolls and the material</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Example of the variation of frictional stress with normal Pressure: (a) Variation of shear stress, and (b) Coefficient of friction</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Theoretical diagram of distribution of the contact stress over the contact arc</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Distribution of the contact stress in three- dimensional deformation</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>The through-gap temperature and stress fields for a medium- strength aluminium alloy cast with large setback</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>The centerline segregation in green refined twin roll cast Al-Mg-Mn alloy strip, 200X</td>
<td>49</td>
</tr>
</tbody>
</table>
Figure 2.19 Heat lines formation in a commercial aluminium alloy
Figure 2.20 Sketch of strip exit temperature as a function of casting speed
Figure 2.21 Plot of strip exist temperature against casting speed for various commercial aluminium alloys
Figure 4.1 Line diagram of twin roll caster
Figure 4.2 Roller Assembly
Figure 4.3 Twin roller assembly
Figure 4.4 Twin roller platform with ladder cum protection grill
Figure 4.5 Power control unit for the twin roller motor
Figure 4.6 Tray to receive strip at angle
Figure 4.7 Shell moulding machine
Figure 4.8 Metal Pattern
Figure 4.9 Metallic pattern details
Figure 4.10 Core box
Figure 4.11 Core box details
Figure 4.12 Pouring cup
Figure 4.13 Pouring cup details
Figure 4.14 Melting Furnace
Figure 4.15 Stirrer
Figure 4.16 Stirrer setup
Figure 4.17 Preheating equipment
Figure 5.1 Twin roll casting parameters
Figure 5.2 Shell cavity formed by the core box
Figure 5.3 Pouring basin shell core
Figure 5.4 Core box details with pattern plate
Figure 5.5 Process flow diagram
Figure 5.6 Roller gap adjustment facility
Figure 5.7 Roller spraying in vertical setup conveying system
Figure 5.8 Process of making strips along with main parameter values
Figure 5.9 Location where strip width was measured
Figure 5.10 Location where strip thickness was measured

xxxix
Figure 5.11 Tensile specimen location 142
Figure 5.12 (a) General nomenclature for dimension of tensile test specimen 142
(b) Actual Dimension of the tensile test specimen adopted for testing 142
Figure 5.13 Die and punch for making tensile test specimen 145
Figure 5.14 Die, punch and its assembled photos 147
Figure 5.15 Punching press unit with the die impulse 148
Figure 5.16 Photograph of punched tensile test specimen 149
Figure 5.17 Tensile testing machine photo 149
Figure 5.18 Locations for measuring BHN of twin roll cast strips 151
Figure 5.19 Pneumatics mounting press for microstructure specimens 154
Figure 5.20 Inverted Metallurgical Microscope with camera attached 156
Figure 5.21 Dendrite nucleation growths and its spacing 158
Figure 5.22 Stage micrometer for standardization and calibration 158
Figure 6.1 Effect of the metal pouring temperature on the starting rpm and ending rpm 167
Within which consistent aluminium strip was formed 167
Figure 6.2 Premature solidification of liquid metal over the roll at low speed of roller 168
Figure 6.3 End strip cracking 171
Figure 6.4 Strip coming out of the roller with defects 171
Figure 6.5 Shrinkage due sudden cooling of the liquid metal at the rollers 172
Figure 6.6 Inconsistent strips due to increased temperature 173
Figure 6.7 Operating parameters for producing continuous strips at various temperatures 179
Figure 6.8 Stable strip obtained 184
Figure 6.9 Variation of strip width with respect to strip longitudinal distance at 670 °C 185
and roller speed of 11 rpm 185
Figure 6.10 Variation of strip width with respect to strip longitudinal distance at 670 °C 186
and roller speed of 12 rpm 186
Figure 6.11 Variation of strip width with respect to strip longitudinal distance at 670 °C 187
and roller speed of 13 rpm 187
Figure 6.12 Variation of strip width with respect to strip longitudinal distance at 680 °C 191
and roller speed of 9 rpm 191
Figure 6.13 Variation of strip width with respect to strip longitudinal distance at 680 °C 191
Figure 6.14 Variation of strip width with respect to strip longitudinal distance at 680 °C and roller speed of 10 rpm

Figure 6.15 Variation of strip width with respect to strip longitudinal distance at 690 °C and roller speed of 11 rpm

Figure 6.16 Variation of strip width with respect to strip longitudinal distance at 680 °C and roller speed of 9 rpm

Figure 6.17 Variation of strip width with respect to strip longitudinal distance at 670 °C and roller speed of 13 rpm

Figure 6.18 Variation of strip width with respect to strip longitudinal distance at 700 °C and roller speed of 9 rpm

Figure 6.19 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 670 °C and at roller speed of 11 rpm

Figure 6.20 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 670 °C and roller speed of 12 rpm

Figure 6.21 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 670 °C and roller speed of 13 rpm

Figure 6.22 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 680 °C and roller speed of 9 rpm

Figure 6.23 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 680 °C and roller speed of 10 rpm

Figure 6.24 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 680 °C and at roller speed of 11 rpm

Figure 6.25 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 690 °C and at roller speed of 9 rpm

Figure 6.26 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 690 °C and at roller speed of 10 rpm

Figure 6.27 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 700 °C and roller speed of 8 rpm

Figure 6.28 Variation of strip thickness with respect to distance along the strip when the pouring temperature is at 700 °C and roller speed of 9 rpm
Figure 6.29 Variation of UTS with respect to roller speed at a liquid melt pouring temperature of 670 °C

Figure 6.30 Variation of UTS with respect to roller speed at a liquid melt pouring temperature of 680 °C

Figure 6.31 Variation of UTS with respect to roller speed at a liquid melt pouring temperature of 690 °C

Figure 6.32 Variation of UTS with respect to roller speed at a liquid melt pouring temperature of 700 °C

Figure 6.33 Variation of % elongation with respect to roller speed at pouring temperature of 670 °C

Figure 6.34 Variation of % elongation with respect to roller speed at pouring temperature of 680 °C

Figure 6.35 Variation of % elongation with respect to roller speed at pouring temperature of 690 °C

Figure 6.36 Variation of % elongation with respect to roller speed at pouring temperature of 700 °C

Figure 6.37 Variation of BHN with respect to roller speed at pouring temperature of 670 °C

Figure 6.38 Variation of BHN with respect to roller speed at pouring temperature of 680 °C

Figure 6.39 Variation of BHN with respect to roller speed at pouring temperature of 690 °C

Figure 6.40 Variation of BHN with respect to roller speed at pouring temperature of 700 °C

Figure 6.41 Venn diagram indicating roller speed merger between various pouring temperatures

Figure 6.42 Variation of lateral strip width with respect to various temperatures

Figure 6.43 Variation of strip thickness with respect to various liquid metal pouring Temperatures

Figure 6.44 Variation of UTS with respect to various liquid metal pouring temperatures

Figure 6.45 Microstructure of strips poured at various temperatures
Figure 6.46 Variation of UTS with respect to various liquid metal pouring temperatures

Figure 6.47 Variation of BHN with respect to various temperatures

Figure 6.48 Variation of width with respect to various % of SiC grade BS 400

Figure 6.49 Variation of width with respect to various % of SiC grade BS 500

Figure 6.50 Variation of width with respect to various % of SiC grade BS 800

Figure 6.51 Variation of strip thickness with respect to various % of SiC grade BS 400

Figure 6.52 Variation of strip thickness with respect to various % of SiC grade BS 500

Figure 6.53 Variation of strip thickness with respect to various % of SiC grade BS 800

Figure 6.54 Variation of UTS with respect to various % of SiC grade BS 400

Figure 6.55 Variation of UTS with respect to various % of SiC grade BS 500

Figure 6.56 Variation of UTS with respect to various % of SiC grade BS 800

Figure 6.57 Variation of % elongation with respect to various % of SiC grade BS 400

Figure 6.58 Variation of % elongation with respect to various % of SiC grade BS 500

Figure 6.59 Variation of % elongation with respect to various % of SiC grade BS 800

Figure 6.60 Variation of BHN with respect to various % of SiC grade BS 400

Figure 6.61 Variation of BHN with respect to various % of SiC grade BS 500

Figure 6.62 Variation of BHN with respect to various % of SiC grade BS 800

Figure 6.63 Effect of silicon carbide particle size on the UTS of twin rolled strips

Figure 6.64 Effect of silicon carbide particle size on the UTS of twin rolled strips

Figure 6.65 Effect of silicon carbide particle size on the UTS of twin rolled strips

Figure 6.66 Effect of silicon carbide particle size on the % Elongation of twin rolled strips

Figure 6.67 Effect of silicon carbide particle size on the % Elongation of twin rolled strips

Figure 6.68 Effect of silicon carbide particle size on the % Elongation of twin rolled strips

Figure 6.69 Effect of silicon carbide particle size on the BHN of twin rolled strips

Figure 6.70 Effect of silicon carbide particle size on the BHN of twin rolled strips

Figure 6.71 Effect of silicon carbide particle size on the BHN of twin rolled strips

xxxv