CHAPTER-6

CONCLUSIONS AND SCOPE FOR THE FURTHER STUDY

1. The ambient gamma radiation exposure levels recorded in the Granite and Sand Quarries located in and around Malnad Biosphere region are comparable with the levels observed at other parts of the world as well as in India.

2. Based on the gamma activity measurements of ^{226}Ra, ^{232}Th and ^{40}K in soil, granites and minerals, it can be concluded that we have recorded higher concentration of ^{226}Ra, ^{232}Th and ^{40}K (much above the global average range) in a few places like areas around Chitradurga fort, Chandravalli, Hanagal particularly in the vicinity of granitic regions. And not in the areas of basement rocks consisting of gneisses and schistose rocks belonging to the Archaean age. This is consistent with the geological history and the geochemical significance of these rocks. Also it has been clearly established that, there is no leakage of any type of radioactive materials from Copper mines at Ingladhal and BBH mines near Hosadurga in the Chitradurga district based on the study of soil, minerals and granites and water samples.
3. The activities of 226Ra, 210Po and 210Pb in soils measured in the Granite and Sand quarries in and around Malnad region show that, the observed ratios of 210Po to 226Ra and 210Po to 210Pb show that both 210Po and 210Pb are not in equilibrium with 226Ra. Further, the topographic and hydraulic gradients would strongly influence the systematics of 210Po to 226Ra ratio.

4. Some rocks especially granites and minerals showed higher radioactivity levels. The radioactivity is due to the presence of in them either of minerals containing radioactive elements (Uranium, thorium, radium), or of radioactive isotopes of potassium, calcium, rubidium, zirconium, tin, tellurium, tungsten, rhenium, or bismuth. In addition, a number of minerals have the capacity to adsorb radioactive elements and isotopes from the surrounding medium. As a consequence, their presence also raises the radioactivity of rocks. Thus it has been found that, the clays and argillaceous shales have increased radioactivity as a result of the sorption of elements in the earth's crust. The radioactivity of rock is given as a percentage amount of uranium.

\[\Gamma_{scr} = \frac{n \, G_a}{n \, G_r} \]

\[\cdots 6.1 \]
Where, n_r and n_s are the number of particles emitted every minute respectively from the rock sample and the standard. Gr and Gs are the weights of the rock and the standard respectively in grams and a is the weight of the uranium in the standard substance.

5. The study of radioactivity in rocks is useful in the measurement of rock density in a mass, as absorption of gamma rays depends on the density of the material. Electrical strength of rocks changes by the effect of gamma rays and still other properties like microhardness, specific gravity and a number of physiochemical properties of rocks change by the presence of gamma rays. The data provided in the present study provides valuable information for geophysicists in the characterization of various types of rocks.

6. The activity of ^{222}Rn in water samples measured show that, concentration of ^{222}Rn in the bore well waters of Chandravalli are quite high compared to those dug in other locations in the town except a well near Government Hospital which showed higher concentration for radon in the water.

7. The electric properties of soils, minerals and granites and their correlation with distribution of radionuclides in them requires lot of attention. It is found that, increase of SiO_2 in soil and Granite is an
indication of Thorium content in the soil. The effect of radiation emitted by Thorium on electric property of Silicon is also need to be studied.

8. In the present study, the chemical characterization of soil was not undertaken during the measurement of specific activities of 210Po and radioactive 210Pb in soil samples. The effect of various chemical parameters, such as, particle size, pH of the soil, calcium carbonate in soil, cation exchange capacity of the soil, carbon content and organic matter content in soil on distribution coefficient of 210Po and radioactive 210Pb, lead mobility, etc., requires lot of attention and will be taken up for the future studies.
REFERENCES:

Abdulrahman I. Alabdula’aly, Occurrence of radon in the central region groundwater of Saudi Arabia, Journal of Environmental Radioactivity, Volume 44, Issue 1, May 1999, Pages 85–95

Fernando P Carvalho (1995) - "210Po and 210Pb intake by the Portuguese Population; The contribution of Sea food in the dietary intake of 210Po and 210Pb", - Health Physics, vol. 69, No.4, pp 469 - 480.

Holtzman R B (1964) - "Lead-210 (RaD) and polonium-210 (RaF) in potable waters in Illinois". In "The Natural Radiation Environment 1" (J A S Adams and W M Lowder eds), pp 227 - 237, Univ. of Chicago Press, Chicogor Illinois.

IAEA (1990) - "The Environmental Behaviour of Radium", Technical Reports-Series No. 310

IAEA / RCA (1989) - Regional Workshop on environmental sampling and measurement of radioactivity for monitoring purposes, Kalpakam, India.

Kannan V and Pillai K C (1973) - "Handling Hazards of Po", BARC/I - 244.

Kannan V, Rajan M P and Iyengar MAR (1992) - Gamma Spectrometric studies of beach sands and soils in the enhanced background site at Kalpakkam, Paper presented at the national seminar on radiation, environment and man, Mysore, Karnataka, India.

Mistry K B, Gopal Iyengar A R and Bharathan K G (1965) - "On the Radioactivity from the High Radiation areas of Kerala Coast and adjoining regions II. Studies on the uptake of Alpha and Gamma emitters", Health Physics, vol. 11, pp 1459 - 1470.

M.N. Alam, M.I Chowdhury, M. Kamal, S. Ghose, M.N. Islam, M.N. Mustafa, M.M.H. Miah, M.M. Ansary, The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh,
Mandakini Maharana, Narayani Krishnan,¹ and D. Sengupta, “Spatial
distribution of gamma radiation levels in surface soils from Jaduguda
uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry,
and determination of outdoor dose to the population”, J Med Phys. 2010

Moore W S and Reid D F (1973) - "Extraction of Ra from natural waters
using Mn-impregnated acrylic fibre", J. Geophys. Res. 78, 8880-8886.

Muguntha Manikandan N, Sivakumar R, Selvaseakarapandian S,
Venkatesan T, Balasubramaniyan S, Meenakshisundaram V, Ragunath V
and Gajendran T (1998) - "Gamma Radiation Dose from Radionuclides
In Soil Samples of Gudalor in Tamil Nadu", Proc. Of NSRP - 12, pp 215
- 218.

Myrick T E, Berven B A and Haywood F F (1983) - "Determination of
Concentrations of Selected Radionuclides in Surface Soil in the U.S.",

Ullal on the Southwest Coast of India", Health Physics, vol. 69, No. 2, pp 178-186.

Neena Raman P (1994) - Studies on radianuclide distribution and uptake in the" environment of Ullal, M. Phil Dissertation, Mangalore University, Mangalore.

P. Raja & P. Shahul Hameed, Study on the Distribution and Bioaccumulation of Natural Radionuclides, 210Po and 210Pb in Parangipettai Coast, South East Coast of India, Indian Journal of Marine Sciences, Vol. 39 (3), September 2010, pp. 449-455.

Raghavayya M, Iyengar MAR and Markose P M (1980) - "Estimation of Ra-
226 by emanometry", Bulletin of Radiation Protection, vol. 3, No. 4, pp
11-16.

Raghuveash S S, Kulkarni N H, Tewari S G and Dwivedy K K (1994) -
"Exposure Rates due to the Naturally Occurring Radioelements over
Parts of Singhbhum dist. Bihar", Proc. of 3rd National Symposium on
Environment, pp 7-14.

Rajan M P, Kannan V, Ganapathy S and Iyengar MAR (1980) - "Natural '
Radioactivity Intake Through Dietary Sources at Kalpakkam", Bulletin of

Raju G K and Singh H N (1995) - "Measurement of Natural Radioactivity of
Southern Kerala, India Proc. Of National Symposium on Radiation
Physics (NSRP-II), pp 123-125

R C Ramola, G S Gusain, Manjari Badoni, Yogesh Prasad, Ganesh Prasad
and T V Ramachandran, "^{226}Ra, ^{232}Th and ^{40}K contents in soil samples

Robley E Evans (1978) - The atomic nucleus, TMH publishers.

Sanni A (1977) - "High Natural Background Radioactivity in Nigeria", In : proc. Of International Symposium on Areas of High Natural
Radioactivity, Edited by Academia Brazileira de Ciencias, Rio de Janeiro, pp 186.

Thomas L Cullen (1977) - "Review of Brazilian investigations an the areas of High Natural Radioactivity. Part I: Radiometric and Dosimetric Studies", In : proc. Of International Symposium on Areas of High Natural Radioactivity, Edited by Academia Brazileira de Ciencious, Rio de Janeiro, pp 49 - 64.

Vassilev G (1991) - Irradiation of the population from the natural background committee on the use of Atomic energy for peaceful purposes, Sofia.

Watters R L and Hansen W R (1970) - "The hazards implication of the transfer of unsupported 210Po from alkaline soil to plants", Health Phys., 18, 409 - 413.
