List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Development of Manufacturing Technology</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>The Concept of Concurrent Engineering</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The Roles and Issues of Manufacturing Planning in the Production Cycle</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>A Framework for Concurrent Engineering</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Product (on left) and (on right) Process Upstream Co-design</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Product Cost Vs Life Cycle Cost</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Sequential and Concurrent Development of New Product</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>The Design for X cycle</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Stages of Design for Manufacturability</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Product Cost Vs Time</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Sample Distributions that Fall Inside of and Outside of the Specification Limit</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Quality Function Deployment</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Product Cost Model</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Four-Dimensional Frameworks for CAPP</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Database Models Transition</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Data Storage in RDBMS and ODBMS</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Difference Between the Traditional Approach and the Object-Oriented Approach</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Object’s Attributes and Methods</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Identical Shape difference in manufacturing</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.17</td>
<td>Identical Shape Parts Grouped</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 5.9 Hole-Part Relationship 157
Figure 5.10 User-Defined Relationship 158
Figure 5.11 An ORM Diagram for the Block and its Features 159
Figure 5.12 A State Net for a Process Object 159
Figure 5.13 OIM Between a Part Object and One of the Process Objects 161
Figure 5.14 Systematic Information Modelling Hierarchy 162
Figure 6.1 Integration Framework of Preliminary Design and Preliminary Process Planning 167
Figure 6.2 Communication Between Design and Process Planning Based on Integrated Design and Manufacturing Process Object Model 167
Figure 6.3 Cost Advantage of Early Decisions 168
Figure 6.4 Typical CE Network in a Machine Tool Manufacturing Company 169
Figure 6.5 The Scheme of the Work Structure of PPM 170
Figure 6.6 Composition of the Objects Used in the Case Study 171
Figure 6.7 Defining the Machine Tool Object 172
Figure 6.8 Tasks of the Machine-Tool Object 173
Figure 6.9 Components of the Object-Machining Task 173
Figure 6.10 Information Structure Object 173
Figure 6.11 Combined Feature Information Structure 176
Figure 6.12 ORM of Combined Features 177
Figure 6.13 Information Content in the System Developed 179
Figure 6.14 Information Structure of the Process Model 182
Figure 6.15 Information Model of Machine tool 184
Figure 6.16 Manufacturing Activity Class Diagram 186
Figure 6.17 Integration of Manufacturing Resource Capability in the IPPPIS 190
Figure 6.18 Manufacturing Resource Capabilities Mapped to Feature’s Attributes 192
Figure 6.19 Feature Form and Shape Generating Processes 193
Figure 6.20 Shape Capability Information Model 194
Figure 6.21 Manufacturing Resource Class Diagram 196
Figure 6.22 Flowchart of the Cost Analysis Process 198
Figure 6.23 Cost Estimation System – Overall Architecture 199
Figure 7.1 Design and Engineering Survey Details 203
Figure 7.2 Top Level Diagram of Manufacturing Firm (Manu. Firm with Standard Products/ Make To Order) 206
Figure 7.3 Causes for Poor Performance of Machine Tool Factory [Fishbone Chart] 207
Figure 7.4 Pareto Analysis - Machine Tool Factory 211
Figure 7.5 A Rough Process Plan 213
Figure 7.6 A Detailed Process Plan 214
Figure 7.7 Conventional Process Planning Procedure 218
Figure 7.8 Hierarchy of the Feature-Based Model 219
Figure 7.9 Architecture of the CAPP 222
Figure 7.8 Technical Drawing of the Part 228
Figure 7.9 Machined Features Used in the Definition of the Part 228
Figure 7.10 Alternatives for Processes Operations and Machine Groups 229
Figure 7.11 Development Mode Based on Model Integration 234
Figure 7.12 An Example of Using a Similar Part for Cost Estimation 236
Figure 7.13 An Example of Using an Existing Shaft for Reducing Part Proliferation 237
Figure 7.14 Bearing Housing 240
Figure 7.15 Interface of Integrated Knowledge Based IPPPIS 241
Figure 7.16 Code Generation Screen 242
Figure 7.17 Screen for Weightage for Different Attributes 242
Figure 7.18 Nearest Scores Secured by Different Items in Comparison with Sample 243
Figure 7.19 Selecting Manufacturing Process Plan 244
Figure 7.20 Screen Showing Manufacturing Costs Incurred in Different Processing Step 245