List of figures

Figure 1.1 Neutron activation analysis .. 10
Figure 1.2 Photograph of Radio Frequency ion source 12
Figure 1.3 Photograph of accelerating column of the 14 MeV Neutron Generator ... 13
Figure 1.4 Photographs of (a) Cockcroft-Walton power supply, (b) New power supply ... 13
Figure 1.5 Photographs of (a) Tritium target holder, (b) Tritium target 14
Figure 1.6 Photograph of a 14 MeV Neutron Generator 15
Figure 1.7 Photograph of control pannel of 14 MeV Neutron Generator 15
Figure 1.8 Photograph of an HPGe detector .. 16
Figure 1.9 A schematic diagram of BARC-TIFR Pelletron facility, Mumbai 17
Figure 1.10 Photograph of 6 meter Proton beam irradiation set-ups at BARC-TIFR Pelletron facility, Mumbai .. 21
Figure 1.11 Schematic diagram of fission process [46] 37
Figure 1.12 Liquid drop potential energy as a function of deformation 40
Figure 1.13 Schematic representation of the double humped fission barrier 41
Figure 1.14 Fission yield as a function of mass number for thermal and 14 MeV neutron-induced fission of 235U ... 43

Figure 2.1 A schematic view of the experimental set up used for the neutron irradiation from 7Li(p, n) reaction using Pelletron facility 54
Figure 2.2 Gamma-ray spectrum of 56Mn from 56Fe(n, p) nuclear reaction at $E_n = 9.85$ MeV ... 56
Figure 2.3 Neutron spectrum from 7Li(p, n) reaction at $E_p = 5.6$ MeV calculated using the results of Meadows and Smith of Ref. [16] 58
Figure 2.4 Neutron spectrum from 7Li(p, n) reaction at $E_p = 7.8$ MeV obtained from Ref. [15] ... 58
Figure 2.5 Neutron spectrum from 7Li(p, n) reaction at $E_p = 12$ MeV obtained from Ref. [15] ... 59
Figure 2.6 Neutron spectrum from 7Li(p, n) reaction at $E_p = 18$ MeV obtained from Ref. [15]………………………………………………………………………………..59

Figure 2.7 Excitation function of the 56Fe(n, p)56Mn nuclear reaction (i) measured at 5.9, 9.85, 14.8 and 15.5 MeV neutron energies and (ii) calculated over 5 to 20 MeV neutron energies using TALYS-1.4 [10] and EMPIRE-2.19 [11] codes in the present work. The data points are the experimental cross-sections values obtained from EXFOR database [8]……………………….66

Figure 3.1 Excitation function of 35Cl(n, 2n)34Cl reaction………………………………80
Figure 3.2 Excitation function of 79Br(n, 2n)78Br reaction (Before Normalization)...81
Figure 3.3 Excitation function of 79Br(n, 2n)78Br reaction (After Normalization)….82
Figure 3.4 Excitation function of 138Ba(n, 2n)137Ba reaction……………………………83
Figure 3.5 Excitation function of 31P(n, α)28Al reaction…………………………………85
Figure 3.6 Excitation function of 55Mn(n, α)52V reaction…………………………………87
Figure 3.7 Excitation function of 92Mo(n, α)89Zr reaction…………………………………88
Figure 3.8 Excitation function of 28Si(n, p)28Al reaction…………………………………90
Figure 3.9 Excitation function of 29Si(n, p)29Al reaction…………………………………91
Figure 3.10 Excitation function of 68Zn(n, p)68Cu reaction…………………………………92

Figure 4.1 A Schamatic reaction layout of U-Pu fuel cycle..101
Figure 4.2 A schematic diagram showing the experimental set up used for the neutron irradiation using 7Li(p, n) reaction...104
Figure 4.3 Gamma-ray spectrum of 239Np and 237U, respectively produced through 238U(n, γ) and 238U(n, 2n) nuclear reactions induced by 15.5 MeV neutrons...105
Figure 4.4 Plot of experimental and evaluated 238U(n, γ)239U reaction cross-section as a function of neutron energy from 1 keV to 20 MeV. Experimental values from present work and from IAEA-EXFOR database are in different symbols, whereas the evaluated and theoretical values from TALYS-1.4 code are in lines with different colour..113
Figure 4.5 Plot of experimental and evaluated $^{238}\text{U}(n, 2n)^{237}\text{U}$ reaction cross-section as a function of neutron energy from 6 to 20 MeV. Experimental values from present work and from IAEA-EXFOR database are in different symbols, whereas the evaluated and theoretical values from TALYS-1.4 code are in lines with different colour.

Figure 5.1 Plot of mass yields distribution in the 3.72, 5.42, 7.75 and 10.09 MeV average neutron-induced fission of ^{238}U.

Figure 5.2 Plot of mass yields distribution in the 4.0, 5.9, 8.0 and 11.0 MeV neutron-induced fission of ^{232}Th.

Figure 5.3 Plot of yields of fission products (%) as a function of excitation energy for $A = 143, 139$ and 134 in the $^{238}\text{U}(n, f)$ and $^{232}\text{Th}(n, f)$ reactions. The data of present work in $^{238}\text{U}(n, f)$ reaction are of same symbol with literature data, but at excitation energies of 8.07, 9.77, 12.1 and 14.55 MeV.

Figure 5.4 Plot of yields of symmetric and asymmetric fission products (%) as a function of excitation energy in the neutron-induced fission of ^{238}U and ^{232}Th. The data of the present work in $^{238}\text{U}(n, f)$ reaction are of same symbol with literature data, but at excitation energies of 8.07, 9.77, 12.1 and 14.55 MeV.

Figure 5.5 Plot of peak-to-valley (P/V) ratio as a function of excitation energy in the neutron-induced fission of ^{238}U and ^{232}Th. The data of the present work in $^{238}\text{U}(n, f)$ reaction are of same symbol with literature data, but at excitation energies of 8.07, 9.77, 12.1 and 14.55 MeV.

Figure 5.6 Plot of average neutron number as a function of excitation energy in the neutron induced fission of ^{238}U and ^{232}Th. The data of the present work in $^{238}\text{U}(n, f)$ reaction are of same symbol with literature data, but at excitation energies of 8.07, 9.77, 12.1 and 14.55 MeV.

Figure 5.7 Plot of average values of heavy mass ($<A_H>$) and average values of light mass ($<A_L>$) as a function of excitation energy in the neutron induced fission of ^{238}U and ^{232}Th. The data of the present work in $^{238}\text{U}(n, f)$
reaction are of same symbol with literature data, but at excitation energies of 8.07, 9.77, 12.1 and 14.55 MeV