CONTENTS

SYNOPSIS 1

LIST OF FIGURES X

LIST OF TABLES XIII

CHAPTER 1 INTRODUCTION

1.1. India’s fast reactor program 1
1.2. Sensor program at IGCAR 1
1.3. Literature review 3
1.3.1. A brief survey of applications of pulsating sensors in nuclear facilities 3
1.3.1.1. Applications of conductivity based sensors 4
1.3.1.2. Applications of dielectric based sensors 7
1.3.1.3. Applications of inductance based sensors 9
1.3.1.4. Applications of EMF based sensors 9
1.4. Review of major analytical instruments used in quality control laboratories attached to reactors 10
1.5. Objective of the current work 13
1.6. Scope of the current work 14

CHAPTER 2 INSTRUMENTATION AND TECHNIQUES

2.1. Introduction 15
2.2. Pulsating Sensors 16
2.3. Pulsating type conductivity meters 19
2.3.1. Sensing methodology 20
CHAPTER 3 DEVELOPMENT OF ANALYTICAL TECHNIQUE FOR TRACE ASSAY OF DISSOLVED OXYGEN BY REDOX TITRATION

3.1. Introduction

3.2. Experimental

3.2.1. Materials and reagents

3.2.1.1. Alkaline potassium iodide (~8M sodium hydroxide/~4M potassium iodide)

3.2.1.2. Manganese sulphate solution (3M MnSO₄·H₂O)

3.2.1.3. 5M Sulphuric acid

3.2.1.4. Standard Sodium thiosulphate solution
3.2.1.5. 0.05M Iodine solution prepared in 2% (w/v) KI solution
3.2.1.6. Potentiometric titration facility
3.2.1.7. DO sampler
3.3. Methodology
3.4. Results and discussion
 3.4.1. Principle
 3.4.2. Advantages of current technique over classical Winkler’s titration
 3.4.3. Initial studies on potentiometric based Winkler’s titration technique
 3.4.4. Potentiometric titrations at trace levels
 3.4.5. Kinetic investigations
3.5. Conclusion

CHAPTER 4 DETERMINATION OF TRACE BORON IN LIGHT WATER AND HEAVY WATER

4.1. Introduction
4.2. Experimental
 4.2.1. Materials and reagents
 4.2.1.1. Preparation of boric acid solution
 4.2.1.2. Preparation of mannitol solution
 4.2.1.3. Preparation of standard NaOH solution
 4.2.1.4. Reagents for interference study
 4.2.1.5. Heavy water
 4.2.1.6. Conductometric titration facility
4.3. Methodology
4.4. Result and discussion
4.4.1. Principle
4.4.1.1. Conductometric titration technique
4.4.1.2. Direct conductivity approach
4.4.2. Conductometric titration approach for the assay of boron
4.4.2.1. Titration plots in light water matrix
4.4.2.2. Titration plots in heavy water matrix
4.4.2.3. Performance evaluation of titration approach
4.4.2.4. Effect of non reacting impurities on titration plots
4.4.2.5. Effect of reacting impurities on titration plots
4.4.3. Direct conductivity approach for the assay of boron
4.4.3.1. Performance evaluation of direct conductivity approach
4.5. Analysis of MAPS moderator samples
4.6. Conclusion

CHAPTER 5 DETERMINATION OF ISOTOPIC PURITY OF HEAVY WATER IN MIXTURES OF LIGHT WATER AND HEAVY WATER BY CONDUCTIVITY APPROACH

5.1. Introduction
5.2. Experimental
5.2.1. Materials and reagents
5.2.1.1. Boron stock solution
5.2.1.2. Heavy water
5.2.1.3. 20% w/v mannitol solution
5.2.1.4. Constant temperature bath
5.2.1.5. Pulsating conductivity meters
5.3. Graphical user interface 87
5.4. Methodology 88
5.5. Results and discussion 89
5.5.1. Principle 89
5.5.2. Choice of reaction 90
5.5.3. Scoping study on the feasibility of conductivity approach 90
5.5.4. Effect of temperature on conductivity measurement 92
5.5.5. Miniaturization of conductivity probe 93
5.5.6. Further miniaturization of conductivity probe 96
5.5.7. Validation of technique 100
5.6. Conclusion 101

CHAPTER 6 PARAMETRIC STUDY ON THE RATE OF CARBONATION OF SODIUM AEROSOLS

6.1. Introduction 102
6.2. Experimental 105
6.2.1. Aerosol Test Facility 105
6.2.2. Dual filter paper sampling system 106
6.2.3. Humidity adjustment system 107
6.2.4. Nitrogen flow setup 108
6.2.5. Conductometric titration facility 108
6.3. Methodology 109
6.3.1. Combustion of sodium and sampling of sodium aerosol 109
6.3.2. Analysis of aerosol sample 110
6.4. Results and discussion 110
6.4.1. Calculation of various aerosol species from conductometric titration plot
6.4.2. Influence of RH% and CO₂ content in the carbonation of sodium aerosols
6.5. Conclusion

CHAPTER 7 CONCLUSION

REFERENCES