Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Review of Literature</td>
<td>1-71</td>
</tr>
<tr>
<td>1.1</td>
<td>Mammalian gut microbiota and probiotics</td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Significance and functions of gut microbial community</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Commensal microbes as intestinal immune modulators</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mucosal barrier function: Role of commensal gut microbiota</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Metabolic functions of the gut microbiota</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Probiotics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance of probiotics</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Clinical significance of probiotics</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of Probiotic function</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli as probiotics</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Major features of E. coli Nissle 1917</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Genetic modification of probiotics</td>
<td>19</td>
</tr>
<tr>
<td>1.2</td>
<td>Reactive oxygen species and oxidative stress</td>
<td>22</td>
</tr>
<tr>
<td>1.2.1</td>
<td>ROS induced oxidative damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damage to DNA</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Damage to proteins</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Damage to lipids</td>
<td>28</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Antioxidants</td>
<td></td>
</tr>
<tr>
<td>1.2.3</td>
<td>Physiological functions of ROS in mammals</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Ethanol and associated metabolic disorders in humans</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Metabolism of ethanol in mammals</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Effect of ethanol and acetaldehyde on human physiology</td>
<td>39</td>
</tr>
<tr>
<td>1.4</td>
<td>Ageing and age associated deleterious changes</td>
<td>40</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Theories of aging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Radical Theory of Ageing (FRTA)</td>
<td>41</td>
</tr>
</tbody>
</table>
2.2.9 Histopathological changes

2.2.10 Serum Glutamate Pyruvate Transferase (SGPT) activity, total bilirubin and blood lipid estimation.

2.2.11 mRNA expression and qRT-PCR of hepatic lipid metabolizing genes

2.2.12 Estimation of colonic SCFAs

2.2.13 Statistical analysis

2.3 Results

2.3.1 Standardization of optimal ethanol dose and duration to created ethanol induced model of systemic oxidative stress and dyslipidemia

2.3.2 Transformation of probiotic E. coli strains with plasmid harboring pqq gene cluster

2.3.3 Effect of EcN-4 secreting PQQ against acute ethanol induced oxidative stress

2.3.4 Effect of EcN-4 secreting PQQ on antioxidant status in chronic ethanol treated rats

2.3.5 Effect of EcN-4 secreting PQQ on weight gain, lipid profile and hepatic gene expression in chronic ethanol treated rats

2.3.6 PQQ concentration in feces and liver in rats treated with EcN-4 secreting PQQ

2.4 Discussions

Chapter 3 Evaluating the effects of PQQ secreting Escherichia coli Nissle 1917 strain on rotenone induced oxidative damage in rats

3.1 Introduction

3.2 Methods and materials

3.2.1 Bacterial strains and culture conditions

3.2.2 Plasmids and constructs

3.2.3 Animals

3.2.4 Designing of the experiment

3.2.5 Characterization of PQQ secreting E. coli Nissle 1917

3.2.6 Enzyme assays and estimations

3.2.7 mRNA expression and qRT-PCR

3.3 Results

3.3.1 Cloning and expression of pqqABCDE gene cluster in EcN
3.3.2 Standardization of rotenone dose and duration for generation of systemic oxidative damage in rats

3.3.3 Amelioration of hepatotoxic effect of rotenone by PQQ and PQQ producing EcN-5

3.4 Discussions

Chapter 4 Evaluating the long term protective efficacy of PQQ producing probiotic Escherichia coli Nissle 1917 strain in aging rats

4.1 Introduction

4.2 Methods and materials

4.2.1 Bacterial strains, culture conditions and plasmids.

4.2.2 Animals

4.2.3 Designing of the experiment

4.2.4 Enzyme assays and biochemical estimations

4.2.5 mRNA expression and qRT-PCR

4.2.6 C. elegans growth conditions and survival assays

4.2.7 Statistical analysis

4.3 Results

4.3.1 Antioxidant status and lipid profile of young and aged Charles Foster rats

4.3.2 Evaluating long term effect of PQQ producing EcN-5 treatment in aging rats

4.3.3 PQQ levels in fecal matter and liver if treated rats

4.3.4 Effect of PQQ on survival of C. elegans against heat shock and H₂O₂.

4.4 Discussion

Chapter 5 Exploring the prebiotic potential of Pyrroloquinoline Quinone producing probiotic Escherichia coli Nissle 1917 in starch fed rats

5.1 Introduction

5.2 Methods and materials

5.2.1 Bacterial strains and culture conditions

5.2.2 Construction and characterization of EcN producing PQQ

5.2.3 Animal experiments
5.2.4 Sample preparation and Biochemical estimations 144
5.2.5 Statistical analysis 145

5.3 Results 146

5.3.1 Generation of high PQQ producing EcN strain and genomic integration of pqqABCDE gene cluster in EcN. 146
5.3.2 PQQ producing EcN-7 and EcN-9 secretes gluconic acid in vitro and in vivo 149
5.3.3 Effect of EcN-7 feeding, dietary gluconic acid and PQQ on colonic SCFAs profile 150

5.4 Discussion 152

Chapter 6 Redox modulation of intestinal diseases using probiotic Escherichia coli Nissle 1917 producing antioxidant Pyrroloquinoline Quinone 155-175

6.1 Introduction 156

6.2 Methods and materials 159

6.2.1 Bacterial strains and plasmids 159
6.2.2 Animals 159
6.2.3 Colonization of E. coli Nissle 1917 in C57 BL/6 mouse gut 159
6.2.4 DSS treatment and probiotic ingestion 159
6.2.5 Histological scoring for DSS experiment 160
6.2.6 C. rodentium infection 161
6.2.7 Bacterial enumeration 161
6.2.8 In Vitro C. rodentium growth inhibition assay 162
6.2.9 mRNA extraction and qPCR analysis 162
6.2.10 Protein extraction and Western blotting 163
6.2.11 Statistical analysis 163

6.3 Results 164

6.3.1 Colonization of E. coli Nissle 1917 in mouse C57 BL/6 mouse gut 164
6.3.2 Evaluating the effect of co- and post-treatment of E. coli Nissle 1917 producing antioxidant PQQ in DSS induced experimental colitis 164
6.3.3 Evaluating the effect of co- and post-treatment of E. coli Nissle 1917 producing antioxidant PQQ in murine Citrobacter rodentium infection model 168
6.3.4 In vitro C. rodentium growth inhibition by wild type and PQQ producing E. coli Nissle 1917

6.4 Discussions

Conclusion

References