ABSTRACT

A line dominating set \(D \subseteq V(L(G)) \) is a split line dominating set, if the subgraph \(V(L(G)) - D \) is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number in \(L(G) \) and is denoted by \(\gamma_{sl}(G) \). In this chapter, we introduce the new concept in domination theory. Also, we study the graph theoretic properties of \(\gamma_{sl}(G) \) and many bounds were obtained in terms of elements of \(G \) and its relationships with other domination parameters were found.
INTRODUCTION

In this chapter, we follow the notations of [1]. The concept of domination in graphs with its many variations is well studied in graph theory (see [2] and [3]).

A line dominating set $D \subseteq V(L(G))$ is a split line dominating set, if the subgraph $\langle V(L(G)) - D \rangle$ is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number of G and is denoted by $\gamma_{sl}(G)$. In this chapter, we introduce the new concept in domination theory. Also we study the graph theoretic properties of $\gamma_{sl}(G)$ and many bounds were obtained in terms of elements of G and its relationships with other domination parameters were found. Throughout this chapter, we consider the graphs with $p \geq 4$ vertices.

RESULTS

Initially, we give the split line domination number for some standard graphs, which are straightforward in the following Theorem.

Theorem 5.1:

a. For any cycle C_p with $p \geq 4$ vertices,

$$\gamma_{sl}(C_p) = \frac{p}{3} \text{ for } p \equiv 0(\text{mod}\, 3).$$

$$= \left\lceil \frac{p}{3} \right\rceil \text{ otherwise.}$$
b. For any path P_p with $p \geq 4$ vertices,

$$\gamma_d(P_p) = n,$$ for $p = 3n + 1$, $n = 1, 2, 3, \ldots,$

$$= \frac{p}{3} \text{ for } p \equiv 0 \pmod{3}.$$

$$= \left\lceil \frac{p}{3} \right\rceil \text{ otherwise.}$$

Theorem 5.2: A split line dominating set $D \subseteq V(L(G))$ is minimal if and only if for each vertex $x \in D$, one of the following condition holds:

a. There exists a vertex $y \in V(L(G)) - D$ such that $N(y) \cap D = \{x\}$.

b. x is an isolated vertex in $\langle D \rangle$.

c. $\langle (V(L(G)) - D) \cup \{x\} \rangle$ is connected.

Proof: Suppose D is a minimal split line dominating set of G and there exists a vertex $x \in D$ such that x does not hold any of the above conditions. Then for some vertex v, the set $D_1 = D - \{v\}$ forms a split line dominating set of G by the conditions (a) and (b). Also by (c), $\langle V(L(G)) - D \rangle$ is disconnected. This implies that D_1 is a split line dominating set of G, a contradiction.

Conversely, suppose for every vertex $x \in D$, one of the above statements hold. Further, if D is not minimal, then there exists a vertex $x \in D$ such that $D - \{x\}$ is a split line dominating set of G and there exists a vertex $y \in D - \{x\}$ such that y dominates x. That is $y \in N(x)$. Therefore, x does not satisfy (a) and (b), hence it must satisfy (c). Then there exists a vertex $y \in V(L(G)) - D$ such that $N(y) \cap D = \{x\}$.
Since $D - \{x\}$ is a split line dominating set of G, then there exists a vertex $z \in D - \{x\}$ such that $z \in N(y)$. Therefore $w \in N(y) \cap D$, where $w \neq x$, a contradiction to the fact that $N(y) \cap D = \{x\}$. Clearly, D is a minimal split line dominating set of G.

The following Theorem characterizes the split line domination and line domination number of graphs.

Theorem 5.3: For any connected graph G, $\gamma_{sl}(G) = \gamma_l(G)$ if $L(G)$ contains the set of end vertices.

Proof: Let $v \in V(L(G))$ be an end vertex and there exists a support vertex $u \in N(v)$. Further, let D be a split line dominating set of G. Suppose $u \in D$, then D is a γ_{sl}-set of G. Suppose $u \notin D$, then $v \in D$ and hence $(D - \{v\}) \cup \{u\}$ forms a minimal γ_{sl}-set of G. Repeating this process for all end vertices in $L(G)$, we obtain a γ_{sl}-set of G containing all the end vertices and $\gamma_{sl}(G) = \gamma_l(G)$.

The following Theorem relates the split line domination and domination number in terms of vertices of a graph.

Theorem 5.4: For any connected (p,q)-graph G, $\gamma_{sl}(G) + \gamma(G) \leq p$.

Proof: Let $C = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the set of all non end vertices in G. Further, let $S \subseteq C$ be the set of vertices with $\text{diam}(u_i, v_i) \geq 3$, $\forall u_i, v_i \in S$, $1 \leq i \leq k$. Clearly, $N[S] = V(G)$ and S forms a γ-set of G. Suppose $\text{diam}(u, v_i) < 3$. Then there exists at least one vertex $x \in V(G) - S$
such that, either \(x \in N(v) \) or \(x \in N(v') \), where \(v \in S \) and \(v' \in S \cup \{x\} \). Then \(S \cup \{x\} \) forms a minimal dominating set of \(G \). Now in \(L(G) \), let \(F = \{u_1, u_2, \ldots, u_n\} \subseteq V(L(G)) \) be the set of vertices corresponding to the edges which are incident to the vertices of \(S \) in \(G \). Further, let \(D \subseteq F \) be the minimal set of vertices which covers all the vertices in \(L(G) \), also making the subgraph \(\langle V(L(G)) - D \rangle \) contains at least two components. Clearly, \(D \) forms a minimal split line dominating set of \(G \). Hence, it follows that \(|D| \cup |S \cup \{x\}| \leq |V(G)| \) and gives \(\gamma_{sl}(G) + \gamma(G) \leq p \).

The following Theorem relates the split line domination and total domination number of \(G \).

Theorem 5.5: For any connected graph \(G \), \(\gamma_{sl}(G) + \gamma_t(G) \leq \alpha_0(G) + \beta_0(G) + 1 \).

Proof: Let \(C = \{v_1, v_2, \ldots, v_n\} \subseteq V(G) \) be the minimal set of vertices with \(\text{dist}(u, v) \geq 2 \) for all \(u, v \in C \), covers all the edges in \(G \). Clearly, \(|C| = \alpha_0(G) \). Further, if for any vertex \(x \in C \), \(N(x) \subseteq V(G) - C \). Then \(C \) itself is an independent vertex set. Otherwise, \(C_1 \cup C_2 \) where \(C_1 \subseteq C \) and \(C_2 \subseteq V(G) - C \), forms a maximum independent set of vertices \(|C_1 \cup C_2| = \beta_0(G) \). Now, let \(S = C \cup C^c \), where \(C \subseteq C \) and \(C^c \subseteq V(G) - C \), be the minimal set of vertices with \(N[S] = V(G) \) and \(\text{deg}(x) \geq 1 \), \(\forall x \in S \) in the subgraph \(\langle S \rangle \). Clearly, \(S \) forms a minimal total
dominating set in G. Now by the definition of line graph, let $F = \{u_1, u_2, \ldots, u_n\} \subseteq V(L(G))$ be the set of vertices corresponding to the edges which are incident with the vertices of S in G. Let there exists a set $D \subseteq F$ of vertices which are minimally independent and covers all the vertices in line graph. Clearly, D itself is a γ_S - set of G. Therefore, it follows that $|D| \cup |S| \leq |C| \cup |C_1 \cup C_2| \cup 1$ and hence $\gamma_S(G) + \gamma(G) \leq \alpha_0(G) + \beta_0(G) + 1$.

The following Theorem relates the split line domination, connected domination and domination number of a graph.

Theorem 5.6: For any connected graph G, $\gamma_S(G) + \gamma_c(G) \leq \text{diam}(G) + \gamma(G) + \alpha_0(G)$.

Proof: Let $C \subseteq V(G)$ be the minimal set of vertices which covers all the edges in G with $|C| = \alpha_0(G)$. Further, there exists an edge set $J \subseteq J$, where J is the set of edges which are incident with the vertices of C^\prime, constituting the longest path in G such that $|J| = \text{diam}(G)$. Let $S = \{v_1, v_2, \ldots, v_k\} \subseteq C$ be the minimal set of vertices which covers all the vertices in G. Clearly, S forms a minimal dominating set of G. Suppose the subgraph $\langle S \rangle$ is connected, then S itself is a γ_c - set. Otherwise, there exists at least one vertex $x \in V(G) - S$ such that $S_1 = S \cup \{x\}$ forms a minimal connected dominating set of G. Now, in $L(G)$, let $F = \{u_1, u_2, \ldots, u_k\} \subseteq V(L(G))$ be the set of vertices such that
\{u_j\} = \{e_j\} \in E(G), 1 \leq j \leq k, \text{ where } \{e_j\} \text{ are incident with the vertices of } S. \text{ Further, let } D \subseteq F \text{ be the set of vertices with } N[D] = V(L(G)) \text{ and if the subgraph } \langle V(L(G)) - D \rangle \text{ contains more than one component. Then } D \text{ forms a split line dominating set of } G. \text{ Otherwise, there exists at least one vertex } \{u\} \in V(L(G)) - D \text{ such that } \langle V(L(G)) - D - \{u\} \rangle \text{ yields more than one component. Clearly, } D \cup \{u\} \text{ forms a minimal } \gamma_{sl} \text{- set of } G. \text{ Therefore, it follows that } |D \cup \{u\}| \cup |S_i| \leq |J| \cup |S| \cup |C| \text{ and hence } \gamma_{sl}(G) + \gamma_c(G) \leq diam(G) + \gamma(G) + \alpha_0(G).

In the following Theorems we give lower bounds to split line domination number of graphs.

Theorem 5.7: If every non end vertex of a tree \(T\) is adjacent to at least one end vertex with \(T\) containing at least two cut vertices, then \(\gamma_{sl}(T) \leq c - 1\), where \(c\) is the number of cut vertices in \(T\).

Proof: Let \(F = \{v_1, v_2, ..., v_m\} \subseteq V(T)\) be the set of all cut vertices in \(T\) with \(|F| = c\). Further, let \(A = \{e_1, e_2, ..., e_k\}\) be the set of edges which are incident with the vertices of \(F\). Now by the definition of line graph, suppose \(D = \{u_1, u_2, ..., u_t\} \subseteq A\) be the set of vertices which covers all the vertices in \(L(T)\). Clearly, \(D\) forms a minimal split line dominating set of \(L(T)\). Therefore, it follows that \(|D| \leq |F| - 1\) and hence \(\gamma_{sl}(T) \leq c - 1\).
Chapter 5: Split Line Domination in Graphs

Theorem 5.8: For any connected \((p,q)\)-graph \(G\), \(\gamma_{sl}(G) \leq \left\lfloor \frac{p}{2} \right\rfloor\).

Proof: Let \(D = \{v_1, v_2, \ldots, v_n\} \subseteq V(L(G))\) be the minimal split line dominating set of \(G\). Suppose \(|V(L(G)) - D| = 0\). Then the result follows immediately. Further, if \(|V(L(G)) - D| \geq 2\), then \(V(L(G)) - D\) contains at least two vertices such that \(2n < p\). Clearly, it follows that \(\gamma_{sl}(G) = n < \left\lfloor \frac{p}{2} \right\rfloor\).

Theorem 5.9: For any connected \((p,q)\)-tree \(T\), \(\gamma_{sl}(T) \leq q - \Delta'(T)\).

Proof: Let \(A = \{v_1, v_2, \ldots, v_n\} \subseteq V(L(T))\) be the set of all support vertices. Suppose there exists a set of vertices \(A_i = \{u_1, u_2, \ldots, u_m\} \subseteq V(L(T)) - A\) such that \(\text{dist}(u_i, v_j) \geq 2\), \(\forall u_i \in A_i, \ v_j \in A, \ 1 \leq i \leq m, \ 1 \leq j \leq n\). Then, clearly \(S = A \cup A_i\) forms a split line dominating set of \(T\). Otherwise, if \(A \nsubseteq V(L(T))\), then select the set of vertices \(S = A_i\) such that \(N[S] = V(L(T))\) and the subgraph \(\langle V(L(T)) - S \rangle\) is disconnected. Clearly, in any case \(S\) forms a minimal split line dominating set of \(T\). Since for any tree \(T\), there exists at least one edge \(e \in E(T)\) with \(\deg(e) = \Delta'(T)\), we obtain \(|S| \leq |E(T)| - \Delta'(T)\). Therefore, \(\gamma_{sl}(T) \leq q - \Delta'(T)\).
Theorem 5.10: For any connected unicyclic graph $G = (V,E)$, $\gamma_{sl}(G) \leq q - \Delta(G) + 1$, if one of the following conditions hold:

b. $G = C_3(u_1, u_2, \ldots, u_n)$, $\deg(u_1) \geq 3$, $\deg(u_2) = \deg(u_3) = 2$, $\text{diam}(u_1, w) \leq 2$ for all vertices w not on C_3 and $\deg(w) \geq 3$ for at most one vertex w not on C_3.

c. $G = C_3$, $\deg(u_1) \geq 3$, $\deg(u_2) \geq 3$, $\deg(u_3) = 2$, all vertices not on C_3 adjacent to u_1 have degree at most 2 and all vertices whose distance from u_1 is 2 are end vertices.

d. $G = C_3$, $\deg(u_1) = 3$, $\deg(u_2) \geq 3$, $\deg(u_3) \geq 3$ and all vertices not on C_3 are end vertices.

e. $G = C_4$, either exactly one vertex of C_4 or two vertices of C_4 have degree at least 3 and all vertices not on C_3 are end vertices.

Proof: Assume $\gamma_{sl}(G) = q - \Delta(G) + 1$. Let A denote the set of all end vertices of $L(G)$ with $|A| = m$. Since $V(L(G)) - (A \cup \{v_1\})$ is a split line dominating set for any vertex v_1 of C, $\gamma_{sl}(G) \leq q - m$ so that $m \leq \Delta(G)$. Let e be an edge of maximum degree $\Delta(G)$. Analogously in $L(G)$, $e = u \in V(L(G))$ such that $|u| = \Delta(L(G))$. If u is not on C, then $m = \Delta(G)$ and there exists vertices v_1 and v_2 on C such that $V(L(G)) - (A \cup \{v_1, v_2\})$ is a split line dominating set of cardinality $q - \Delta(G)$, which is a contradiction. Hence u lies on C and $m \geq \Delta(G) - 1$, we now consider the following cases.
Case 1: \(m = \Delta(G) - 1 \). In this case, all vertices other than \(u \) and \(v \) have degree either one or two. Hence \(C = C_3 \) or \(C_4 \) and \(G \) is isomorphic to one of the graphs described in (a) to (e).

Case 2: \(m = \Delta(G) \). In this case, there exists a unique vertex \(u \) on \(C \) such that \(V(L(G)) - (A \cup \{u\}) \) is a minimum split line dominating set of \(G \). It follows that \(C = C_3 \) and \(G \) is isomorphic to the graph described in (d).
REFERENCES

1. F. Harary, Graph theory, Adison Wesley, Reading mass, 1972.
