List of Tables

3.1 Computational complexity for methods used in this work 34
3.2 Parameter values for methods used in this work 35
3.3 Performance comparison of proposed denoising filter with other ap-
proaches on various quantitative measures under Gaussian Noise as-
sumption on T1 images of Brain Web database 37
3.4 Performance comparison of proposed denoising filter with other ap-
proaches on various quantitative measures under Gaussian Noise as-
sumption on T2 images of Brain Web database 38
3.5 Performance comparison of proposed denoising filter with other ap-
proaches on various quantitative measures under Rician Noise as-
sumption on T1 images of Brain Web database 38
3.6 Performance comparison of proposed denoising filter with other ap-
proaches on various quantitative measures under Rician Noise as-
sumption on T2 images of Brain Web database 43
4.1 Performance comparison of proposed denoising strategy with NLM
and LPG-PCA approaches on various quantitative measures under
Gaussian Noise assumption in BrainWeb database (slice=70 & 100,
Modality = T1 and patch size = 5 × 5). The bold figures represent
best figure for each noise level for all measures. 59
4.2 Performance comparison of proposed denoising filter with NLM and LPG-PCA approaches on various quantitative measures under Gaussian Noise assumption in Brain Web database (slice=70 & 100, Modality = T2 and patch size = 5 × 5). The bold figures represent best figure for each noise level for all measures. 60

4.3 Performance comparison of proposed denoising filter with NLM approach on various quantitative measures under Rician Noise assumption in Brain Web database (slice=70 & 100, Modality = T1 and patch size = 5 × 5). The bold figures represent best figure for each noise level for all measures. 61

4.4 Performance comparison of proposed denoising filter with NLM approach on various quantitative measures under Rician Noise assumption in Brain Web database (slice=70 & 100, Modality = T2 and patch size = 5 × 5). The bold figures represent best figure for each noise level for all measures. 61

5.1 Performance comparison of proposed denoising strategy with different approaches on various quantitative measures under Rician Noise assumption in Brain Web database (slice=70 & 100, Modality = T1, image size = 181 × 217 and patch size = 5 × 5). Best figures are shown in Bold. .. 78

5.2 Performance comparison of proposed denoising strategy with different approaches on various quantitative measures under Rician Noise assumption in Brain Web database (slice=70 & 100, Modality = T2, image size = 181 × 217 and patch size = 5 × 5). Best figures are shown in Bold. .. 80

6.1 Various Kernel used in this work .. 86

6.2 Results of state-of-the-art Methods for Noise Free Data for T1, T2 and PD modalities (represented row-wise against each method) 86
6.3 Results of state-of-the-art Methods for T1 modality (represented row-wise against each method). In each 2×2 block, top-left figure is PSNR, top-right is RMSE, bottom-left is SSIM and bottom-right is BC measure. The figure against each noise level is represented in Bold face.

6.4 Results of state-of-the-art Methods for T2 modality (represented row-wise against each method). In each 2×2 block, top-left figure is PSNR, top-right is RMSE, bottom-left is SSIM and bottom-right is BC measure. The figure against each noise level is represented in Bold face.

6.5 Results of state-of-the-art Methods for PD modality (represented row-wise against each method). In each 2×2 block, top-left figure is PSNR, top-right is RMSE, bottom-left is SSIM and bottom-right is BC measure. The figure against each noise level is represented in Bold face.