CAPTIONS OF FIGURES

Fig. 1.1 Structure of barite projected upon the (010) face.

Fig. 1.2 Arrangement of twelve oxygen atoms surrounding the central barium atom.

Fig. 1.3 Diagramatic representation of the structure of barite.

Fig. 1.4 Different forms and shapes of barite crystals.

Fig. 1.5 Prominent forms of celestite crystals.

Fig. 1.6 Two forms of anglesite crystals.

Fig. 2.1 Edward's vacuum coating unit, 12 E.A.

Fig. 2.2 Carl Zeiss Jena high vacuum coating plant, HBA 120/2.

Fig. 2.3 Incident light microscope, 'Epignost'.

Fig. 2.4 Vickers projection microscope.

Fig. 2.5 Carl Zeiss Jena electron microscope, EM-4.

Fig. 2.6 The electron-optical system of the microscope along with the microscope column.

Fig. 2.7 Multiple reflections between two parallel glass plates.

Fig. 2.8 Indentation equipment fitted to the Vickers projection microscope.

Fig. 2.9 Philips X-ray unit FW-1009.

Fig. 3.1 Growth on a (100) face of a crystal with simple cubic lattice by the repeatable step mechanism.
Different stages of the formation of spiral from a screw dislocation.

Fig. 3.2

(001) cleavage face of natural strontium sulphate crystal. X 100.

Fig. 4.1(a)

Multiple beam interferogram over the cleavage shown in fig. 4.1(a). X 100.

Fig. 4.1(b)

(210) cleavage face of natural strontium sulphate crystal. X 100.

Fig. 4.2(a)

Multiple beam interferogram over the cleavage shown in fig. 4.2(a). X 100.

Fig. 4.2(b)

Etch patterns produced on the same region of a (001) cleavage face after etching it in hot conc. H3PO4 for 40 and 60 mins. respectively. X 200.

Figs. 4.3(a) and 4.3(b)

Etch patterns produced on (001) matched cleavages. X 200.

Figs. 4.4(a) and 4.4(b)

Etch patterns on the two sides of a thin flake and the transmission picture (4.5(c)) showing both the faces. X 200.

Fig. 4.5(a) and 4.5(b)

Rosette pattern around an indentation mark on a (001) face. X 400.

Fig. 4.6

Etch pattern on a heated (001) cleavage face. X 200.

Figs. 4.7(a) and 4.7(b)

Etch patterns on the matched (001) cleavages showing discrepancies in the number and position of etch pits. X 100.

Fig. 4.8(a)

The region A' of fig. 4.8(b). X 400.

Fig. 4.8(d)

The region B' of fig. 4.8(b). X 400.

Fig. 4.9

Etch pattern revealing the existence of dislocation loop. X 500.
Fig. 4.10 Etch pattern revealing the existence of stepped dislocation. X 500.

Fig. 4.11 Etch pattern on a (001) cleavage face exhibiting the abrupt variation in the etch pit density. X 100.

Figs. 4.12(a) and 4.12(b) Etch patterns on the matched ((210)) cleavage faces produced by etching in hot conc. H₃PO₄. X 200.

Fig. 4.13 Polygonal walls along [[100]] on a (001) cleavage face. X 100.

Fig. 4.14 Polygonal walls along [[010]]. X 100.

Fig. 4.15 A simple model of a low angle grain boundary.

Fig. 4.16 Electron micrograph of a low angle grain boundary on a (001) cleavage plane. X 2000.

Figs. 4.17(a) and 4.17(b) Correspondence of grain boundary on ((001)) matched cleavages. X 200.

Figs. 4.18 and 4.19 Two cases of intersection of grain boundaries on ((001)) cleavage faces. X 200.

Fig. 4.20 Grain boundary on a (210) cleavage plane. X 200.

Fig. 4.21 Inclusions observed on and just below the cleavage plane of a natural strontium sulphate crystal. X 100.

Fig. 4.22 Cluster of etch pits around a large inclusion. X 200.

Fig. 4.23 Etch pattern representing volume indentation. X 300.

Fig. 5.1 Stratigraphical etch pattern produced on a (001) cleavage face by etching it in hot conc. H₂SO₄. X 100.
Fig. 5.2 An electron micrograph of the rectilinear traces. X 1500.

Fig. 5.3(a) and 5.3(b) Rectilinear etch patterns produced on ((001)) matched cleavages. X 100.

Figs. 5.4(a) 5.4(b) and 5.4(c) Correspondence between the etch patterns on the opposite sides of a thin flake, fig. 5.4(a) being the matched face of fig. 5.4(b). X 100.

Fig. 5.5 An interesting stratigraphical etch pattern obtained on a (001) cleavage face. X 100.

Fig. 5.6 Linear etch pattern across a large cleavage step. X 550.

Fig. 6.1 A few strontium sulphate single crystals grown by the chemically reacted flux method.

Fig. 6.2 Rotation photograph of synthetic SrSO₄ crystal (Rotation axis 'a').

Fig. 6.3 A typical dendritic growth pattern. X 400.

Fig. 6.4 Laue photograph with beam direction normal to (001).

Fig. 6.5 Laue photograph with beam direction normal to (210).

Figs. 6.6(a) and 6.6(b) A typical (001) cleavage face of synthetic crystal and the multiple beam interferogram over it. X 200.

Fig. 6.7 Triangular etch pits on a (011) habit face etched in hot conc. H₃PO₄ containing MgO as poison. X 200.

Fig. 6.8 Etch pattern on a (101) habit face. X 250.
Fig. 6.9 A typical etch pattern on (001) cleavage face of synthetic crystal. X 350.

Figs. 6.10(a) and 6.10(b) Etch patterns on ((001)) matched cleavages. X 200.

Figs. 6.11(a) and 6.11(b) Etch patterns on ((210)) matched cleavages. X 250.

Figs. 7.1(a) to (e) Five stages of the same rosette pattern obtained on a (001) cleavage face at increasing depths. X 400.

Fig. 7.2 Traces of rosette pattern on (210) cleavage obtained due to the indentation made on (001) cleavage face. X 500.

Fig. 7.3 Complete rosette pattern obtained on a (210) cleavage plane obtained by indenting that face itself. X 350.

Fig. 7.4 Traces of rosette pattern on (001) cleavage face obtained due to indentation made on (210) cleavage face. X 350.

Fig. 7.5 Traces of rosette pattern on (210) cleavage face obtained due to indentation. X 500.

Fig. 7.6 Schematic representation of (001) and (210) cleavages and the directions of rosette arms obtained.

Fig. 7.7 Schematic representation of dislocation half loops on a representative slip plane.

Fig. 8.1 The dendritic pattern produced on a SrSO₄ crystal cleavage. X 200.

Fig. 8.2 Electron micrograph of the region marked A in fig. 8.1. X 1500.

Fig. 8.3 Another example of the dendritic pattern produced. X 200.
Fig. 8.4 A few crystals of SrSO₄ grown by flux evaporation method (mm scale).

Fig. 8.5 Needle-like crystals of SrSO₄ grown by fast cooling of the flux (mm scale).

Figs. 8.6 and 8.7 Two examples of dendritic patterns observed on the faces of synthetic SrSO₄ crystals. X 400.

Fig. 8.8 A few crystals of laboratory grown BaSO₄ (mm scale).

Fig. 8.9 Crystals of PbSO₄ grown in the laboratory using Na₂SO₄ as flux (mm scale).

Fig. 8.10 X-ray rotation photograph of SrSO₄ (Rotation axis 'a').

Fig. 8.11 X-ray rotation photograph of BaSO₄ (Rotation axis 'b').

Fig. 8.12 X-ray rotation photograph of PbSO₄ (Rotation axis 'a').

Fig. 9.1 Graph revealing the polar dependence of 1/λ² of both SrSO₄ and BaSO₄ crystals.

Fig. 9.2 Rosette pattern on a (001) cleavage face of SrSO₄ crystal; the diagonal of the indentation mark is parallel to [100]. X 400.

Fig. 9.3 Rosette pattern on a (001) cleavage face of synthetic BaSO₄ crystal. X 400.

Fig. 10.1 Experimental setup for the growth of BaSO₄ and SrSO₄ crystals from gels.
Fig. 10.8 Crystals of BaSO₄ grown in silicic acid gel; typical dimensions 1.0-1.3 mm.

Fig. 10.9 Crystals of SrSO₄ grown in gel; typical dimensions 1.0 - 2.0 mm.

Fig. 10.10 (011) as-grown face of SrSO₄ crystal of larger dimension. X 50.

Fig. 10.11 Typical crystals of SrSO₄ grown at about 20°C. X 25.

Fig. 11.1 Crystals of PbSO₄ grown from gel; typical dimensions 2.0 - 3.0 mm.

Fig. 11.2 Schematic representation of the various crystal forms of PbSO₄ observed.

Fig. 11.3 Parallel variations observed on a (100) habit face. X 150.

Fig. 11.4 Polygonal cones on a (001) habit face of a thin tabular crystal. X 100.

Fig. 11.5 Growth layers around a microcrystal present on a (001) habit face of a thick tabular crystal. X 300.

Fig. 11.6 Growth layers observed on (101) habit face, which appear to have their initiation centre at the d-c edge of the crystal. X 200.

Figs. 11.7(a) and 11.7(b) ((001)) matched cleavages of gel grown PbSO₄. X 200.

Fig. 11.8 Etch pits on (210) habit face produced by etching in hot conc. H₃PO₄ containing MgO as poison. X 300.

Fig. 11.9 Etch pits on (001) habit face. X 250.

Fig. 11.10(a) Two stages of successive etching of and 11.10(b) a (001) cleavage face of PbSO₄. X 250.
Fig. 11.11(a) Etch patterns on ((001)) matched and 11.11(b) pair. X 250.

Fig. A.1 Needle shaped PbCl₂ crystals embedded in the gel.

Fig. A.2 X-ray rotation photograph of PbCl₂ crystal (Rotation axis 'a').

Fig. A.3 (a) Graph showing time-size relation of crystal growth.

(b) Plot of \(l^2 \) versus \(t \).

Fig. A.4 Spurious nucleation at the gel feed solution interface. X 5.

Fig. A.5 A typical two-dimensional dendrite. X 3.

Fig. A.6 Three-dimensional dendrites. X 3.
Fig. 10.1

Fig. 10.2