APPENDIX A

AUTOMATIC CONTINUITY OF *HOMOMORPHISMS

The following theorem has been established by Fragoulopoulou [43, Proposition 3.9]. In this regard also see [41].

Theorem A.1. The image, under a *homomorphism \(\phi \), of a Pták Q lmc * algebra \(E \) onto a barrelled pre-pro-C* algebra \(F \) is, upto a topological algebraic *isomorphism, a C*-algebra.

In this appendix we show that this result holds if (i) the assumption that \(E \) is a Pták space is omitted; (ii) the topological algebraic assumption that \(E \) is a Q locally m-convex * algebra is replaced by the weaker and only algebraic condition that \(E \) is a *sb * algebra (without any topology); and (iii) \(F \) is assumed to be pseudocomplete. On the other hand, as shown in the examples following Theorem A.5, the assumptions that \(F \) is barrelled and that \(F \) carries the pro-C*-topology cannot be omitted.

We begin with the following lemma.
Lemma A.2. Let I be a closed two sided ideal in a topological algebra A. If A is a Q-algebra, then the quotient algebra A/I is also a Q-algebra.

Proof. Let $\pi: A \to A/I = B$ (say), $\pi(x) = x + I$. Then π is an open surjective homomorphism satisfying $\pi(A_2) \subseteq B_2$. The conclusion follows from the fact [61, Lemma E.2] that a topological algebra is a Q-algebra if and only if the set of all quasiregular elements has nonempty interior.

The following theorem refines [43, Theorem 3.1].

Theorem A.3 [16]. Let E be a \ast-sub algebra, F be a pre-pro-C^\ast-algebra with $Q \subseteq \mathcal{V}_3(F)$ and $\phi: E \to F$ be a \ast-homomorphism. Then $\phi(E) \subseteq b(F)$. Further, if E is a Q locally convex \ast-algebra, then ϕ is continuous in the norm topology on $b(F)$; and consequently, ϕ is continuous in the topology of F.

Proof. F can be assumed to be complete without loss of generality. For any $x \in E$, $sp(\phi(x)) \subseteq sp(x)$; consequently, $r(\phi(x)^* \phi(x)) = r(\phi(x^* x)) \leq r(x^* x) < \infty$. Now, for $q \in Q$, F_q is a C^\ast-algebra. Hence by [61, Corollary 5.3], $r(\phi(x)^* \phi(x)) = \sup_{q \in Q} q(\phi(x)^* \phi(x))$ for all $x \in E$. Thus, for all $x \in E$, $q \in Q$.

207
\[
\sup_{q \in \mathcal{Q}} q(\phi(x))^2 = \sup_{q \in \mathcal{Q}} q(\phi(x)^* \phi(x)) \\
= r(\phi(x)^* \phi(x)) \\
= r(\phi(x^* x)) \\
\leq r(x^* x) \\
< \infty.
\]
This shows that \(\phi(E) \subseteq b(F) \). Now, let us assume that \(E \) is a \(K \)-locally convex *algebra. By [73], there exist a continuous seminorm \(q \) on \(E \) and a constant \(K > 0 \) such that \(r(x) \leq Kp(x) \) for all \(x \in E \). Thus,

\[
\|\phi(x)\|_\infty = \sup_{q \in \mathcal{Q}} q(\phi(x))^2 \\
= \sup_{q \in \mathcal{Q}} q(\phi(x)^* \phi(x)) \\
\leq r(x^* x) \\
\leq Kp(x^* x),
\]
for all \(x \in E \). Now, the desired continuity of \(\phi \) follows from the continuity of the involution and the joint continuity of multiplication on \(E \).

Corollary A.4. Let \(E \) be a \(K \)-locally convex *algebra which is also a Pták space. Let \(F \) be a barrelled pre-pro-C*-algebra. Let \(\phi: E \to F \) be a surjective *homomorphism. Then the quotient topology on \(E/\ker(\phi) \) is ncrmable, \(E/\ker(\phi) \) is a...
C*-algebra and φ induces a homeomorphic isomorphism between E/ker(φ) and F.

Proof. By Theorem A.3, φ is continuous. Consequently, ker(φ) is a closed two sided ideal; hence by Lemma A.2, E = E/ker(φ) is a Hausdorff Q locally convex algebra. The induced map \(\hat{\phi} : E \to F, \hat{\phi}(x + \text{ker}(\phi)) = \phi(x) \) is a continuous surjective isomorphism. Now, if E is also a Pták space, then by [69, corollary 3, p.165], E is a Pták space. Also, by [69, Corollary 1, p.164], the induced map \(\tilde{\phi} : E \to (F,τ) \) is a homeomorphism. Since a Pták space is complete [69, §8.1, p.162], \((F,τ) \) is complete. As E is a Q-algebra, \((F,τ) \) is also a Q-algebra. By [2, Theorem 4.3], \((F,τ) \) is a C*-algebra. It follows now, that the quotient topology on E is normable and \(\tilde{E} \) is a C*-algebra. This completes the proof.

Theorem A.5 [16]. Let E be a *sb *algebra and F be a barrelled pseudocomplete pre-pro-C*-algebra with Q ∈ \(\mathcal{S}(F) \). Let \(\phi : E \to F \) be a surjective isomorphism. Then the topology of F is normable and F is a C*-algebra.

Proof. Let τ be the topology of F. By Theorem A.3, F = φ(E) ⊆ b(F), hence F = b(F). The set \(B = \{ y \in F = b(F) : ||y||_\infty = \sup_{q≤q} q(y) ≤ 1 \} \) is a τ-closed, τ-bounded, absolutely convex, idempotent subset of F. Also, b(F) = A(B) and \(||\cdot||_\infty = ||\cdot||_B \). Since F is pseudocomplete, \((A(B), ||\cdot||_B) = (B, ||\cdot||_\infty) \) is complete.
and hence is a C^*-algebra. Now, the open mapping theorem [69, Corollary 1, p.1641], applied to the continuous map $\text{id} : (b(F), \| \cdot \|_{\infty}) \to (F, \tau)$, $\text{id}(x) = x$, $(x \in b(F))$, shows that τ is normable and (F, τ) is the C^*-algebra $(b(F), \| \cdot \|_{\infty})$. This completes the proof.

Example A.6. In Theorem A.5, the barrelledness of F cannot be omitted. Indeed, let E to be the C^*-algebra $C[0,1]$ of all continuous functions on $[0,1]$ with the sup norm and let F also be the same algebra but with the topology of the uniform convergence on all countable compact subsets of $[0,1]$. Also, let $\phi : E \to F$ be $\phi(f) = f$, $(f \in E)$. Then F is a pro-C^*-algebra with the barrel $U = \{ f \in F : |\hat{f}(x)| \leq 1 \text{ for all } x \in [0,1] \}$ which is closed but not a neighbourhood of 0. Let us note that F is not normable.

Example A.7. Let $F = C^0[0,1]$, the Frechet lmc $*$algebra with the topology τ determined by the m^*-calibration $\{ p_n : n \in \mathbb{N} \}$, where $p_n(f) = \sup \{ \sum_{k=0}^{n} |f^{(k)}(x)| : 0 \leq x \leq 1 \}$. $(f \in F, n \in \mathbb{N})$. Then (F, τ) is not a pro-C^*-algebra. Taking $E = F$, E is $*$sb and the map $\phi : E \to F$, $\phi(f) = f$, $(f \in E)$, is a surjective $*$homomorphism. However, τ is not normable. Thus the assumption that F is a pre-pro-C^*-algebra from the hypothesis of Theorem A.5 cannot be omitted.