CHAPTER 1

CHARACTERIZATIONS OF PRO-C*-ALGEBRAS

The present chapter is devoted to obtaining several characterizations of pro-C*-algebras. Theorem 1.1.9 characterizes the pro-C*-algebras intrinsically, to which the first section is allotted. Section 2 contains a non-involutive characterization of pro-C*-algebras. In section 3, we deal with those characterizations which are linked to the topological duals. Section 4 is dealt with the investigation of the local structure of the pro-C*-algebras. In section 5, we present an example showing that there exists a topological *-algebra A, in which, for each selfadjoint element h, the *-algebra generated by h is a C*-algebra, but A is not a pro-C*-algebra. In passing, we examine the bounded part b(A) of a pro-C*-algebra A in section 6. Most of the results cited in this chapter have appeared in [15].

1.1. An intrinsic characterization

We begin with certain preliminaries concerning the numerical range theory for Banach algebras and lmc algebras. We recall the following definitions from [18] and [19].
Definitions 1.1.1. Let \((A, || \cdot ||)\) be a Banach algebra. The state space of \((A, || \cdot ||)\) is the set \(D(A, || \cdot ||, 1) = \{ f \in A' : || f || = f(1) = 1 \} = \{ f \in A' : f(1) = 1, || f(x) || \leq || x || \ for \ all \ x \in A \}. For any \(x \in A\), the numerical range of \(x\) (with respect to the norm \(|| \cdot ||\)) is the set \(V(A, || \cdot ||, x) = \{ f(x) : f \in D(A, || \cdot ||, 1) \}. An element of the set \(H(A, || \cdot ||) = \{ x \in A : V(A, || \cdot ||, x) \subset \mathbb{R} \}\) is called a hermitian element of \(A\). A continuous linear functional \(f\) on \(A\) is said to be a hermitian linear functional on \(A\) if \(f(x) \in \mathbb{R}\) for all \(x \in H(A, || \cdot ||)\). We denote the set of all such functionals by \(H(A, || \cdot ||')\) or by \(H(A')\). For \(x \in A\), \(v(x) = \sup \{ \lambda : \lambda \in V(A, || \cdot ||, x) \}\), is called the numerical radius of \(x\).

The following definitions are exactly the analogues of the above definitions. All, but the definition of \(P\)-hermitian linear functionals, can be found in [45].

Definitions 1.1.2. Let \(A\) be a complete \(lmc\) algebra and \(P \in \mathcal{P}(A)\) be directed. For \(p \in P\), let \(D_p = \{ f \in A' : f(1) = 1, f(x) \leq p(x) \ for \ all \ x \in A \}\) and \(D(A, P, 1) = \bigcup_{p \in P} D_p\). For \(x \in A\) and \(p \in P\), let \(V(A, p, x) = \{ f(x) : f \in D_p \}\). Also, the set \(V(A, P, x) = \{ f(x) : f \in D(A, P, 1) \}\) is called the numerical range of \(x\) (or better \(P\)-numerical range of \(x\)). \(v(A, P, x) = \sup \{ |\lambda| : \lambda \in V(A, P, x) \}\) is called the numerical radius of \(x\). Let \(H(A, P) = \{ x \in A : V(A, P, x) \subset \mathbb{R} \}\).
Then each \(x \in H(A, P) \) is called a hermitian element (or a \(P \)-hermitian element) of \(A \). Similarly, an \(f \in H((A, P)' \) = \(\{ f \in A' : f(x) \in \mathbb{R} \text{ for all } x \in H(A, P) \} \) is called a hermitian linear functional (or a \(P \)-hermitian linear functional) on \(A \).

For \(p \in P \), we write \(H^p = \{ sf - tg : s, t > 0 \text{ in } \mathbb{R} \text{ and } f, g \in D_p \} \).

Also, \(B_p = \{ x \in A : v(A, P, x) < \infty \} \) is the collection of all elements of \(A \) with bounded numerical range.

Remark 1.1.3. The one to one correspondence between \(A'(p) \) and \(A_p' \) (Theorem 0.1.31(i)) induces the one to one correspondence between:

(i) \(D_p \) and the state space \(D(A_p, ||\cdot||_p^p) \) of the Banach algebra \((A_p, ||\cdot||_p^p) \).

(ii) \(H^p \) and \(H((A_p') = H((A_p, ||\cdot||_p^p)^\prime) \), the collection of all hermitian linear functionals on \((A_p, ||\cdot||_p^p) \).

The same correspondence also gives

\[V(A, p, x) = V(A_p, ||\cdot||_p^p, x_p). \]

In what follows, we write \(S_p = \{ x \in A : p(x) \leq 1 \text{ for all } p \in P \} \). Throughout this section, we assume a calibration \(P \) on an lmc algebra \(A \) to be directed.
Lemma 1.1.4 (50). Let A be a complete lmc algebra.

1. If $P \in \mathcal{P}(A)$, then $S_P \in \mathcal{B}(\tau)$.

2. Given $B \in \mathcal{B}(\tau)$, there exists $P \in \mathcal{P}(A)$ such that $B \subseteq S_P$.

3. If A is also an lmc *-algebra, then for each $B \in \mathcal{B}(\tau)$, there exists $P \in \mathcal{P}(A)$ such that $B \subseteq S_P$.

The following is the Vidav-Palmer theorem for C^*-algebras [18, p.65]. Theorem 1.1.6(2) is pro-C^*-analogue of it, characterizing the pro-C^*-algebras among the lmc algebras.

Theorem 1.1.5 (Vidav-Palmer) [18]. Let $(A, ||\cdot||)$ be a Banach algebra. Then $(A, ||\cdot||)$ is a C^*-algebra with some involution if and only if $A = H(A, ||\cdot||) \oplus IH(A, ||\cdot||)$.

Theorem 1.1.6 [45]. Let A be a complete lmc algebra. Let $P \in \mathcal{P}(A)$ be directed.

1. $B_P = A(S_P)$ and $||x||_{S_P} = \sup \{p(x) : p \in P\}$, $(x \in B_P)$.

Further, for each $x \in B_P$, $V(A, P, x) = V(B_P, ||\cdot||_{S_P}, x)$, where $-$ denotes the closure.

2. $A = H(A, P) \oplus IH(A, P)$ if and only if there exists an involution on A, making A a pro-C^*-algebra, with $P \subseteq S(A)$. The involution is determined by the above direct sum.
As a corollary to the above theorem, we have the following result.

Corollary 1.1.7. Let A be a complete lmc algebra with a directed $P \in \mathcal{E}_2(A)$. Then A is a pro-C^*-algebra with $P \in \mathcal{E}_3(A)$ if and only if $D(A,P,1) \subseteq A^{'h}$.

Proof. Suppose A is a pro-C^*-algebra with $P \in \mathcal{E}_3(A)$. Let $f \in D(A,P,1)$. Then by Definitions 1.1.2, there exists $p \in P$ such that $f \in D_p$, and hence $f_p \in D(A_p,||\cdot||_p,1_p)$ by Remark 1.1.3(i). Thus $||f_p|| \leq 1$ and $f_p(1_p) = 1$. So, by $(28, \text{Proposition 2.1.9})$, $f_p \in A^{'h}_p$. Again, an appeal to Theorem 0.1.31(3) gives $f \in A^{'h}$.

Conversely, suppose $D(A,P,1) \subseteq A^{'h}$. Let $h \in A^h$ and $f \in D(A,P,1)$. Then $f \in A^{'h}$. Hence $f(h) = f^*(h) = f(h^*) = f(h)$. Thus $f(h) \in \mathbb{R}$. Since $f \in D(A,P,1)$ is arbitrary, it follows that $A^h \subseteq H(A,P)$, giving $A = A^h + iA^h \subseteq H(A,P) + iH(A,P)$, a direct sum because $H(A,P) \cap iH(A,P) = \{0\}$. So, by Theorem 1.1.6(2), A is a pro-C^*-algebra with $P \subseteq S(A)$. This completes the proof.

Before we go to the final and the main result of this section, we note the following lemma (45, Lemma 3, p.88).
Lemma 1.1.8. Let A be a complete lmc algebra and $P \in \mathcal{K}_1(A)$. Then $H(A,P)$ is closed in A.

We note that topological *algebras, more general than the C^*-algebras, called the Generalized B^*-algebras (or in short, GB^*-algebras), introduced by Dixon [29], have been studied by Bhatt ([6], [7]). The source of inspiration for our result is his analogous result [7, Theorem 21]. He proves it by using somewhat complicated numerical range theory. Our proof mainly uses the definition and the ideas of the inverse limits and C^*-algebra results.

Theorem 1.1.9. Let A be a complete lmc *algebra. Then A is a pro-C^*-algebra if and only if A contains a *subalgebra B such that

(i) B is a C^*-algebra with some norm $||\cdot||$; and

(ii) the inclusion $(B, ||\cdot||) \to A$ is continuous embedding with the dense range.

Further, if $K = \{x \in B : ||x|| \leq 1\}$ is closed in A, then $B = b(A)$.

Proof. Suppose that A is a pro-C^*-algebra. Let $x \in A$ and $y = x^* x$. Then y is normal; and so, by functional calculus [62, Proposition 1.8, p.184] (and also Theorem 0.1.37), there exists a unique *homomorphism $\psi : C(sp(y)) \to A$ which sends 1.
to 1 and the identity function to y. But by Theorem 0.1.36(2), $\text{sp}(y) \subset [0, \infty)$. Thus the function $g : \text{sp}(y) \to \mathbb{R}$ defined by $g(\lambda) = 1 + \lambda$, $(\lambda \in \text{sp}(y))$, does not vanish on $\text{sp}(y)$ and hence g is invertible in $C(\text{sp}(y))$. Since $1 + y = \Psi(g)$, $1 + y \in A^{-1}$.

For $p \in S(A)$, let $\Psi_p : C(\text{sp}_p(y)) \to A_p$ be the unique homomorphism and let us consider the mapping $f : \text{sp}(y) \to \mathbb{R}$, defined by $f(\lambda) = \frac{\lambda}{(1 + \lambda)^2}$, $(\lambda \in \text{sp}(y))$. Denoting $f|_{\text{sp}_p(y)}$ also by f, we have,

$$
\Psi_p(f) = (1 + y_p)^{-1} y_p (1 + y_p)^{-2} = (1 + x_p x_p)^{-1} x_p x_p (1 + x_p x_p)^{-2}.
$$

Also,

$$
p(x(1 + x^*)^{-1})^2 = \|x_p (1 + x_p x_p)^{-2}\|_p^2
= \|\Psi_p(f)\|_p
\leq \sup \{|f(\lambda)| : \lambda \in \text{sp}_p(y)\}
= \sup \{\frac{\lambda}{(1 + \lambda)^2} : \lambda \in \text{sp}_p(y)\}
\leq 1.
$$

Thus, taking supremum over all $p \in S(A)$, it follows that $x(1 + x^*)^{-1} \in b(A)$ with $\|x(1 + x^*)^{-1}\|_\infty \leq 1$ for all $x \in A$.

For $x \in A$, let $x_n = x(1 + \frac{1}{n} x^*)^{-1} = \sqrt{n} \left(1 + \left(\frac{1}{n}\right)\left(\frac{y}{y_n} \cdot \frac{y}{y_n}\right)^{-1}\right)$. Then $x_n \in b(A)$. Also,
\[x - x_n = x - x(1 + \frac{1}{n^* x})^{-2} \]
\[= (x(1 + \frac{1}{n^* x}) - x)(1 + \frac{1}{n^* x})^{-1} \]
\[= \frac{1}{n^* x} x(1 + \frac{1}{n^* x})^{-1} \]
\[= \left(\frac{X}{\sqrt{n}} \left(1 + \frac{X}{\sqrt{n}} \right)^{-1} \right). \]

Hence for any \(p \in S(A) \),

\[p(x - x_n) \leq \frac{1}{\sqrt{n}} p(x x^*) p(1 + \frac{x^* x}{\sqrt{n} \sqrt{n}}) \]
\[\leq \frac{1}{\sqrt{n}} p(x)^2 \to 0 \text{ as } n \to \infty. \]

Thus \((b(A), \|\cdot\|_\infty) \) is continuously embedded in \(A \) with the sequentially dense range.

Conversely, let \(A \) be a complete \(\text{lim} \ C^* \) algebra and \(B \) be as given in the hypothesis. Let \(P_1 \in \mathcal{C}_2(A) \) be directed, \(x \in A \) and \((x_i)_{i \in I} \) be a net in \(B \) satisfying \(x_i \to x \). Then \(x_i^* \to x^* \) and \(x_i^* x_i \to x^* x \). Since \((B, \|\cdot\|) \) is a \(C^* \)-algebra, \(y_i = (1 + x_i^* x_i)^{-2} \in B \) with \(\|y_i\| \leq 1 \) for each \(i \in I \). Using the boundedness of \(K \) in \(A \), for any \(q \in P_1 \), we get a constant \(M_q > 0 \) satisfying

\[\text{i.i.} q(x) \leq M_q \text{ for all } x \in K. \]

Thus, for any \(q \in P_1 \),
\[q(y_i - y_j) = q((1 + x_i^*x_i)^{-1}(x_j^*x_j - x_i^*x_i)(1 + x_j^*x_j)^{-1}) \]
\[\leq M^2q(x_j^*x_j - x_i^*x_i) \to 0, \]

showing that \((y_i)\) is a Cauchy net in \(A\). Let \(y = \lim_{i} y_i\) in \(A\).

Since \(1 + x_i^*x_i \to 1 + x^*x\) and since \((1 + x_i^*x_i)^{-1} = y_i \to y\)
in \(A\), by the continuity of the inversion map in complete IUC algebras, \(y = (1 + x^*x)^{-1}\). Thus for any \(x \in A\), \(1 + x^*x \in A^{-1}\) and hence \(A\) is symmetric.

Let us note that if \(K\) is closed, then since
\[||x_i(1 + x_i^*x_i)^{-2}||^2 = ||x_i^*x_i(1 + x_i^*x_i)^{-2}|| \leq 1, \]
(by the standard functional calculus in \(C^*\)-algebras), \(x_i(1 + x_i^*x_i)^{-2} \in K\), giving \(x(1 + x^*x)^{-1} \in \overline{K} = K\).

Now, since the closure \(\overline{K}\) of \(K\) is in \(\mathcal{B}(A)\), by Lemma 1.1.4(3), there exists \(P \in \mathcal{S}_2(A)\) such that \(\overline{K} \subseteq S_P\). Also, replacing \(P\) by \(\hat{P}\) as defined in Proposition 0.1.15, we assume \(P\) to be directed. This gives \(B \subseteq B_P = \{x \in A : \nu(A,P,x) < \omega\}\). Thus we have,

\[1.1.9(b) \quad |x|_{S_P} \leq |x|_{K} = ||x|| \text{ for all } x \in B. \]

Since \(P \in \mathcal{S}_2(A)\), \(S_P \in \mathcal{B}(\tau)\); consequently, by Lemma 0.1.25,
\((B_P,|\cdot|_{S_P}) = (A(S_P),|\cdot|_{S_P})\) is a Banach \(^*\)-algebra. In particular, \(|\cdot|_{S_P}\) is \(^*\)-preserving on \(B_P\). Further, since \(B_P\) contains the \(C^*\)-algebra \(B\), by [65, Theorem 4.8.3], \(r_P(x) = r_{B_P}(x)\) for all
\(x \in B \), where \(r_B(\cdot) \) and \(r_{B_p}(\cdot) \) denote the spectral radius in \(B \) and \(B_p \) respectively. Thus by 1.1.9(b), for \(x \in B \),

\[
||x||^2 = ||x^*x|| = r_B(x^*x) = r_{B_p}(x^*x)
\]

\[
\leq ||x^*||_{B_p} \leq ||x^*||_{B_p} ||x||_{B_p} \leq ||x||_{B_p} ||x||.
\]

This gives,

1.1.9(c) \[||x|| \leq ||x||_{B_p} \text{ for all } x \in B. \]

Thus 1.1.9(b) and 1.1.9(c) give,

1.1.9(d) \[||x|| = ||x||_{B_p} \text{ for all } x \in B. \]

Now, let \(h \in A^h \) and \((z_i)_{i \in I} \) be a net in \(B \) such that \(z_i \rightarrow h \). Taking \(h_i = \frac{z_i + z_i^*}{2} \), we get \(h_i \in B^h \), and \(h_i \rightarrow h \).

Since \(B \) is a \(C^\# \)-algebra, by [20, Proposition 12.20], \(B^h = H(B, ||\cdot||) \). By Theorem 1.1.6(1), \(V(A, P, h_i) \subseteq V(B_p, ||\cdot||_{B_p}, h_i) = V(B, ||\cdot||_{B_p}, h_i) = V(B, ||\cdot||, h_i) \subseteq \mathbb{R} \). Thus by Lemma 1.1.8 and by the fact that \(h_i \in H(A, P) \), we have \(h \in H(A, P) \), showing that \(A^h \subset H(A, P) \). Thus \(A = A^h + iA^h \subset H(A, P) + iH(A, P) \), a direct sum because \(H(A, P) \cap iH(A, P) = \{0\} \). Thus by Theorem 1.1.6(2), \(A \) is a pro-\(C^\# \)-algebra with the involution \(x = h + ik \mapsto h - ik = x^* \), \((h, k \in H(A, P)) \) and \(P \subseteq S(A) \). Since \(^* \) and \(\# \) agree on \(B \) and since \(B \) is dense in \(A \), \(^* \) and \(\# \) agree on \(A \).
Finally, suppose that K is closed. Then $B = A(K)$ is a C^*-algebra with $||\cdot|| = ||\cdot||_{s_p}$. Now, let $h \in B^h_p$. Then $h \in A^h$. Also, as noted earlier, $h_n = h(1 + \frac{1}{n}h^2)^{-1} \in B^h$ with $||h(1 + h^2)^{-1}|| \leq 1$ and $|h - h_n|_{s_p} \leq \frac{1}{\sqrt{n}} |h|^2 \to 0$ as $n \to \infty$, so that, $h \in B^h$. Hence $B^h = B^h_p$. Now, by Theorem 1.1.6(1) and Proposition 0.1.34, $B = B^h_p = \{ x \in A : v(A,P,x) < \infty \} = \{ x \in A : \sup_{p \in P} p(x) < \infty \} = b(A)$, which completes the proof.

This theorem is applied to obtain a number of other characterizations of pro-C^*-algebras. Next, we investigate a non-involutive case.

1.2. A non-involutive case

Let us first note that if A is a pro-C^*-algebra, then for any $P \in \mathcal{S}_2(A)$, $B^h_p = b(A)$ by Proposition 0.1.34 and Definition 0.1.35. It is proved in [45, Theorem 6], that an Lmc algebra A with a directed $P \in \mathcal{S}_2(A)$ is a pro-C^*-algebra if and only if B^h_p is a C^*-algebra. The following result improves this. In fact, [45, Theorem 6] follows as a corollary (Corollary 1.2.2).
Theorem 1.2.1 [15]. Let A be a complete lcm algebra with a directed $P \in \mathcal{S}(A)$. Then A is a pro-C^*-algebra with some involution and with $P \subseteq S(A)$ if and only if there exists a subalgebra B of B_p satisfying the following conditions.

(i) B is a C^*-algebra with some involution and some norm $||\cdot||$.

(ii) $(B, ||\cdot||) \rightarrow A$ is the continuous inclusion with the dense range.

(iii) $|x|_p \leq ||x||$ for all $x \in B$.

Proof. The necessity is obvious by taking $B = B_p = \mathfrak{b}(A)$. Conversely, suppose that there exists a subalgebra B of B_p satisfying (i), (ii) and (iii) above. First, we show that $|x^*|_p = |x|_p$ for each $x \in B$. Since B_p is a Banach algebra containing the C^*-algebra B, by [65, Theorem 4.8.3], $r_p(x) = r_p(x)$ for all $x \in B$. Hence, for all $x \in B^h$, $||x|| = r_p(x) = r_p(x) \leq |x|_p$, and consequently, for any $y \in B$,

$||y||^2 = ||y^*y|| \leq |y^*y|_p \leq |y^*|_p |y|_p \leq |y|_p ||y||$. Thus $|y|_p \leq ||y|| \leq |y|_p$ for all $y \in B$. Now, by the symmetry, $|y^*|_p \leq |y|_p$, showing that $|x^*|_p = |x|_p$ for all $x \in B$. This gives $||x||^2 = ||x^*x|| \leq |x^*x|_p \leq |x^*|_p |x|_p = |x|_p^2$, showing that $||x|| = |x|_p$ for all $x \in B$. Thus, as in the
proof of Theorem 1.1.9, it follows that \(A = \mathcal{H}(A, P) \ominus i\mathcal{H}(A, P) \).

So, by Theorem 1.1.6(2), \(A \) is a pro-\(C^\pi \)-algebra with \(P \subseteq S(A) \).

This completes the proof.

Corollary 1.2.2 ([45, Theorem 6]). Let \(A \) be a complete lmc algebra. Let \(P \in \mathcal{E}(A) \). Then the following are equivalent.

1. There exists an involution \(* \) on \(A \), making \(A \) a pro-\(C^\pi \)-algebra with \(P \subseteq S(A) \).
2. \((B_P, |^*|_{S_P}) \) is a \(C^\pi \)-algebra.

We obtain one more characterization of pro-\(C^\pi \)-algebras in the absence of the involution (Theorem 1.3.11), but the result also deals with the topological dual of \(A \) and hence fits more appropriately in the following section.

1.3. Some dual characterizations

It is known [46] that a unital Banach \(^\pi \)-algebra \(A \) is a \(C^\pi \)-algebra if and only if every continuous hermitian linear functional on \(A \) is a difference of two continuous positive linear functionals on \(A \). We obtain an analogue of this result (Theorem 1.3.2).
Definition 1.3.1. Let A be a complete lmc *algebra. Then $S = \{x \in A : f(x^*x) \leq f(1) \text{ for all } f \in P(A)\} = \{x \in A : ||\pi_f(x)|| \leq 1 \text{ for all } f \in P(A)\}$ is called the pro-C^*-ball of A.

Theorem 1.3.2 [15]. Let A be a complete lmc *algebra. Then A is a pro-C^*-algebra if and only if the following hold.

(i) A is hermitian; and

(ii) every continuous hermitian linear functional on A is a difference of two continuous positive linear functionals on A.

Proof. Suppose (i) and (ii) above hold. We first show that the pro-C^*-ball S of A is the greatest member of $B^*(\mathcal{H})$. Let $x \in S$ and $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1$. Then for $f \in P(A)$, $||\pi_f(\lambda x)|| = |\lambda||\pi_f(x)|| \leq 1$. Hence S is balanced. Also, for $x \in A$ and $f \in P(A)$, $||\pi_f(x^*)|| = ||\pi_f(x^*)|| = ||\pi_f(x)|| \leq 1$, showing that S is a * preserving subset of A. Now, let $x, y \in S$ and let $t \in [0, 1]$, then for any $f \in P(A)$, by Cauchy-Schwarz inequality,

$$f((tx + (1 - t)y)^* (tx + (1 - t)y))$$

$$= t^2f(x^*x) + (1 - t)^2f(y^*y) + t(1 - t)f(x^*y) + f(y^*x))$$

$$\leq t^2f(x^*x) + (1 - t)^2f(y^*y) + t(1 - t)||x^*y|| + ||f(y^*x)||$$

$$\leq t^2f(x^*x) + (1 - t)^2f(y^*y) + 2t(1 - t)f(x^*x)^{1/2}f(y^*y)^{1/2}$$

$$= (tf(x^*x)^{1/2} + (1 - t)f(y^*y)^{1/2})^2$$

48
Thus \(S \) is convex. Now, let \(x, y \in S \), \(u = xy \) and \(f \in P(A) \). Then \(f_y(z) = f(y^* z y) \), \((z \in A) \), defines an element \(f_y \) of \(P(A) \). And \(f(u^* u) = f_y(x^* x) \leq f_y(1) = f(y^* y) \leq f(1) \), which shows that \(u \in S \). Thus \(S \) is an idempotent. Also, by the assumption (ii), \(A' \) is a linear span of \(P(A) \); hence \(S \) is \(\sigma(A, A') \)-bounded, and hence is bounded in the topology of \(A \). Now, let \(x \in \bar{S} \), the closure of \(S \) in \(A \). So, there exists a net \((x_i) \) in \(S \) such that \(x_i \to x \) in \(A \). But then \(x_i^* x_i \to x^* x \), and consequently, for any \(f \in P(A) \), \(f(x_i^* x_i) = \lim f(x_i^* x_i) \leq f(1) \), showing that \(x \in S \).

Thus \(S \) is closed in \(A \). All this gives \(S \in \mathcal{B}^*(\tau) \). Now, let \(B \in \mathcal{B}^*(\tau) \), \(x \in B \) and \(f \in P(A) \). Then the automatic continuity of the positive linear functional \(f \) on the Banach \(^*\)-algebra \((A(B), \| \cdot \|_B) \) implies that \(f(x^* x) \leq \| f \| \| x^* x \|_B \leq f(1) \| x \|_B^2 \leq f(1) \) since \(x \in B \). Thus \(x \in S \). Hence \(S \) is the greatest member of \(\mathcal{B}^*(\tau) \).

Next, we show that \((A(S), \| \cdot \|_S)\) is a \(C^* \)-algebra. Since \(S \in \mathcal{B}^*(\tau) \), by Lemma 0.1.25, \((A(S), \| \cdot \|_S)\) is a Banach \(^*\)-algebra. Let \(x \in A(S) \). Then \(\| x^* x \|_S \leq \| x \|_S \| x \|_S = \| x \|_S^2 \). On the other hand, let \(y = \frac{x^* x}{\| x^* x \|_S} \) (assuming that \(x \neq 0 \)). Then \(y \in S \).

So, \(f(y^* y) \leq f(1) \) and hence \(f \left(\frac{x^* x}{\| x^* x \|_S} \right) \leq f(1) \) for all \(f \in P(A) \).
This gives \(\frac{x}{|x^* x|^2} \in S \), and hence \(\frac{|x|}{|x^* x|^2} \leq 1 \), giving \(|x|^2 \leq |x^* x| \). Thus \(|\cdot| \) is a \(C^* \)-norm making \((A(S), |\cdot|) \) a \(C^* \)-algebra. Also, by the assumption (i), for each \(h \in A^h \) and for each \(f \in P(A) \), \(\| (1 + \pi_i (h)^2)^{-1} \| \leq 1 \). Thus \((1 + h^2)^{-4} \in S \) and \(h^2 (1 + h^2)^{-2} = (1 + h^2)^{-4} - (1 + h^2)^{-2} \in A(S) \) with \(|h^2 (1 + h^2)^{-2}| \leq 1 \). Hence \(|h (1 + h^2)^{-4}| \leq 1 \). As in the proof of Theorem 1.1.9, \(\lim_{n \to \infty} h (1 + \frac{1}{n} h^2)^{-4} = h \) in \(A \) with \(h (1 + \frac{1}{n} h^2)^{-4} \in A(S) \). Thus \((A(S), |\cdot|) \) is a \(C^* \)-algebra which is dense in \(A \) and hence, by Theorem 1.1.9, \(A \) is a pro-\(C^* \)-algebra.

Conversely, a pro-\(C^* \)-algebra is always hermitian. Let \(f \in A^h \). Then for some \(q \in S(A) \) and some scalar \(M > 0 \), \(|f(x)| \leq Mq(x) \). Thus \(f \in A'^{(q)} \) and so, as in Theorem 0.1.31(3), \(f_q(x) = f(x), (x_q \in A_q) \), defines a hermitian linear functional on the \(C^* \)-algebra \(A_q \). Now, by the \(C^* \)-theory [46], there exist \(g_1, g_2 \in P(A_q) \) such that \(f_q = g_1 - g_2 \). But again, by Theorem 0.1.31(3), \(G_i(x) = g_i(x)_, (x \in A), (i = 1, 2), \) defines elements of \(P(A) \). It follows now, by the simple verification, that \(f = G_1 - G_2 \), a difference of two continuous positive linear functionals on \(A \). This completes the proof.
Definition 1.3.3. Let A be a complete lmc * algebra. An $f \in \mathcal{P}(A)$ is said to be representable if there exist a representation $\pi \in \mathcal{R}(A)$ and a cyclic vector $\xi \in H_\pi$ such that $f(x) = \langle \pi(x)\xi, \xi \rangle$ for all $x \in A$.

The following proposition is a particular case of [8, Theorem 2.2].

Proposition 1.3.4. Let A be a complete lmc * algebra and f be a continuous positive linear functional on A. Then the following are equivalent.

(1) f is representable.

(2) There exists a continuous positive linear functional f_1 on A_1, the unitization of A, such that $f_1|A = f$.

(3) $|f(x)|^2 \leq Kf(x^*x)$ for all $x \in A$ and for some constant $K > 0$.

The following theorem is the non-unital version of Theorem 1.3.2.

Theorem 1.3.5. Let A be a complete lmc * algebra without unit. Then A is a pro-C* algebra if and only if the following hold.

(i) A is hermitian; and
(ii)' every continuous hermitian linear functional on A is a difference of two continuous representable positive linear functionals on A.

Proof. Suppose (i)' and (ii)' hold. Let A_1 be the unitization of A and f_1 be a continuous hermitian linear functional on A_1. Then $f_1 = f_1|A$ is a continuous hermitian linear functional on A and hence $f = g - h$ on A for some continuous representable positive linear functionals g and h on A. Let K_g and K_h be two constants such that for all $x \in A$, $|g(x)|^2 \leq K_g g(x^*x)$ and $|h(x)|^2 \leq K_h h(x^*x)$. Let $K = \max\{K_g, K_h\}$. Since f_1 is hermitian, $f_1(1) \in \mathbb{R}$. Suppose $f_1(1) \geq 0$. Then taking $K_1 = K + f(1) \geq K$, $|g(x^*x)| \leq K g(x^*x) \leq (K + f(1)) g(x^*x) = K_1 g(x^*x)$. For $x + \lambda 1 \in A_1$, we define $g_1(x + \lambda 1) = g(x) + K_1 \lambda$ and $h_1(x + \lambda 1) = h(x) + K \lambda$. Then,

$$g_1(x + \lambda 1) - h_1(x + \lambda 1) = g(x) - h(x) + f_1(\lambda 1)$$

$$= f(x) + f_1(\lambda 1)$$

$$= f_1(x) + f_1(\lambda 1)$$

$$= f_1(x + \lambda 1).$$

Similarly, if $f_1(1) < 0$, then replacing K by $K_2 = K - f_1(1)$ in the definition of h_1 and replacing K_1 by K in the definition of g_1, it follows that $f_1 = g_1 - h_1$, a difference of two continuous representable positive linear functionals on A_1. Thus by Theorem 1.3.2, A_1 is a pro-C^\ast-algebra and hence A is a pro-C^\ast-algebra.
The converse is easy in the light of the fact that each continuous hermitian linear functional \(f \) on \(A \) can be extended as a continuous hermitian linear functional \(f_1 \) on \(A_1 \) defined by \(f_1(x + \lambda 1) = f(x) + \lambda, ((x + \lambda 1) \in A_1) \).

Remark 1.3.6. A decomposition stronger than that in Theorem 1.3.2(ii) is available in pro-\(C^\# \)-algebras, which alone is sufficient to characterize pro-\(C^\# \)-algebras. This is precisely what we show in the following proposition.

Proposition 1.3.7 ([15],[49]). Let \(A \) be a complete \(\text{Inc} \) algebra. Let \(P \in \mathcal{S}_2(A) \) be directed. Then \(A \) is a pro-\(C^\# \)-algebra with \(P \in \mathcal{S}_3(A) \) if and only if for each \(p \in P \) and each hermitian linear functional \(f \in A'(p) \), there exist \(g_1, g_2 \in P(A)_p \) such that \(f = g_1 - g_2 \).

Proof. Let \(p \in P \) and \(f_p \in A'^h_p \). Then by Theorem 0.1.31(3), \(f \in A'(p) \) and \(f \) is hermitian. So, there exist \(g_1, g_2 \in P(A)_p \) such that \(f = g_1 - g_2 \). But then again, by Theorem 0.1.31(3), \(g_{1p}, g_{2p} \in P(A_p) \) and \(f_p = g_{1p} - g_{2p} \), which makes \(A_p \) a \(C^\# \)-algebra by [46]. Thus \(A \) is a pro-\(C^\# \)-algebra with \(P \in \mathcal{S}_3(A) \).

Conversely, suppose that \(A \) is a pro-\(C^\# \)-algebra. Let \(p \in P \in \mathcal{S}_3(A) \) and \(f \in A'(p) \) be a hermitian linear functional on \(A \). So, by Theorem 0.1.31(3), \(f_p \in A'^h_p \). Now, by [46], there exist \(g_{1p}, g_{2p} \in P(A_p) \) such that \(f_p = g_{1p} - g_{2p} \).
Let us define \(g_i(x) = g_{ip}(x_p), \) \((x \in A, \ i = 1, 2). \) Then one more application of Theorem 0.1.31(3) reveals that \(g_i \in A'(p), \) \((i = 1, 2), \) are positive and \(f = g_1 - g_2, \) which completes the proof.

Before we proceed further, we note that the fact that the pro-\(C^* \)-ball of a pro-\(C^* \)-algebra \(A \) is the greatest member of \(B^*(r) \) has the following implication, which further justifies calling the elements of \(b(A) \) bounded.

Proposition 1.3.8 ([15]). Let \(A \) be a pro-\(C^* \)-algebra. Suppose \(B \) is a *subalgebra of \(A \) which is also a Banach algebra under some norm \(||·|| \). Then \(B \subset b(A) \) continuously.

Proof. Without loss of generality, we assume that \(1 \in B. \) Let \(U = \{x \in B : ||x|| \leq 1\}. \) Then \(U \) is an absolutely convex, *preserving, idempotent subset of \(A \) containing \(1. \) Now, let \(f \in P(A). \) Then by [20, §37], \(f|_B \) is a \(||·|| \)-continuous positive linear functional on \(B \) satisfying \(|f|_B(x)| \leq f(1) \) for all \(x \in U. \) Hence as in the proof of Theorem 1.3.2, \(U \) is \(\sigma(A, A') \)-bounded, and so, \(U \) is bounded in the topology of \(A. \) Thus \(U \in \mathcal{B}(r), \) giving \(U \subset S. \) Now, it is obvious that on \(B, \)

\[
||·||_\infty \leq ||·||_E \leq ||·||_U = ||·||. \]

This completes the proof.

Lemma 1.3.9. Let \(A \) be a complete lmc algebra and \(P \in \mathcal{S}_1(A) \) be directed. Then \(A' \) is the linear span of \(D(A,P,1). \)
Proof. Let \(f \in A' \). So, there exists \(p \in P \) such that \(f \in A' (p) \).

So, by (19, p.100), there exist \(s \) in \([0,\infty)\) and \(g_{ip} \) in \(D(A_p,||\cdot||_p,1_p) \), \((i = 1,2,3,4) \), such that \(f_p = s_i g_{ip} - s_i g_{ip} \) + \(i(s^*_ig_{ip} - s^*_ig_{ip}) \). Let \(g_i(x) = g_{ip}(x_p) \), \((x \in A, i = 1,2,3,4) \).

Then by Remark 1.1.3(1), \(g_i \in D_p \), and hence \(g_i \in D(A,P,i) \) for each \(i = 1,2,3,4 \). Also, it is easily seen that \(f = s_1 g_1 - s_2 g_2 + i(s^*_1g_1 - s^*_2g_2) \), which completes the proof.

Now, we come to the final result of this section which, being a non-involutive version, also supplements the Vidav-Palmer Theorem. It generalizes the Moore dual characterization of \(C^* \)-algebras (19, §31), that is stated below.

Theorem 1.3.10 (19). Let \((A,||\cdot||) \) be a Banach algebra. Then \((A,||\cdot||) \) is a \(C^* \)-algebra with some involution defined on it if and only if \(A' = \text{H}(A') \oplus \text{iH}(A') \).

Theorem 1.3.11. Let \(A \) be a complete lmc algebra and \(P \subseteq \mathcal{B}(A) \) be directed. Then the following are equivalent.

1. There exists an involution on \(A \) making \(A \) a pro-\(C^* \)-algebra with \(P \subseteq \mathcal{S}(A) \).

2. \(A' = \text{H}(\mathcal{C}(A,P)') \oplus \text{iH}(\mathcal{C}(A,P)') \).

3. \(\mathcal{H}(\mathcal{C}(A,P)') \cap \text{iH}(\mathcal{C}(A,P)') = \{0\} \).
Proof. As can be seen from the proof of Lemma 1.3.9, $A' = H(A,Py) + iH(A,Py)$ is always true. Thus (2) \iff (3) becomes obvious.

(1) \Rightarrow (3). Suppose $f \in H(A,Py) \cap iH(A,Py)$. Since A is a pro-C^*-algebra, $H(A,Py) = A^{h}$. Thus $f \in A^{h} \cap iA^{h}$. So, $f(x) = 0$ for all $x \in A$. This proves (3).

(3) \Rightarrow (1). Let $h = sf - tg \in H(A,Py)$ with $f, g \in D(A,P,1)$ and $s, t > 0$. So, there exist $p_{1}, p_{2} \in P$ such that $f \in D_{p_{1}}, g \in D_{p_{2}}$. Since P is directed, there exists $p \in P$ such that $p_{1} \leq p, p_{2} \leq p$. But then $f, g \in D_{p}$. Thus $h \in H^{p}$. This shows that $H(A,Py) = \bigcup_{p \in P} H^{p}$. Now, (3) implies that $H^{p} \cap iH^{p} = \{0\}$ for all $p \in P$ and hence by Remark 1.1.3(ii), $H(A') \cap iH(A') = \{0\}$. Applying [19, Theorem 31.10], it follows that for each $p \in P$, $(A_{p}, || \cdot ||_{p})$ is a C^*-algebra with the involution defined by the decomposition $A_{p} = H(A_{p}) \oplus iH(A_{p})$. The involution on the C^*-algebras A_{p} are compatible with the inverse system $\{A_{p}\}$ and hence (1) follows. This completes the proof.

1.4. Local structure

A Banach algebra A is called a C^*-equivalent algebra if A is a C^*-algebra under some equivalent norm on A. It is shown in [26] that a Banach algebra A is C^*-equivalent if and only if for each $h = h^{\infty}$ in A, the closed subalgebra...
generated by h is C^\ast-equivalent, which is true if and only if every maximal abelian \ast-subalgebra of A is C^\ast-equivalent. Such a phenomenon does not occur in pro-C^\ast-algebras (Example 1.5.1). However, we have the following theorem as an application of Proposition 1.3.8.

Theorem 1.4.1 [15]. Let A be a pro-C^\ast-algebra.

(1) If every maximal abelian \ast-subalgebra of A is a C^\ast-algebra, then A is a C^\ast-algebra.

(2) If every maximal abelian \ast-subalgebra of A is finite dimensional, then A is finite dimensional.

Proof. (1) Let \mathfrak{M} be the collection of all maximal abelian \ast-subalgebras of A. Then by Proposition 1.3.8, each $M \in \mathfrak{M}$ is contained in $b(A)$, since each $M \in \mathfrak{M}$ is a C^\ast-algebra. Thus $A = b(A)$ algebraically. In view of [62, Proposition 1.14], it is enough to prove that A is a Q-algebra. For each $M \in \mathfrak{M}$, let $G(M) = \{x \in M : x$ is invertible in A and $x^{-1} \in M\} = \{x \in A : x$ is invertible in A and $x^{-1} \in M\}$ by the maximality of M. The set $Y(M) = \{x \in A : x$ has no inverse in M\} is closed and so $X(M) = A^h \cap Y(M)$ is closed in A. Thus $E = \{x \in A^h : x \in A^{-1}\} = \bigcap \{X(M) : M \in \mathfrak{M}\}$ is closed. Now, let $(x_\iota)_{\iota \in I}$ be a net of singular elements of A such that $x_\iota \to x$. Then $x_\iota^* x_\iota \to x^* x$ and $x_\iota x_\iota^* \to x x^*$. By the singularity of x_ι, for each i, either
It is singular. Let $I_{x} = \{i \in I : x_{i}^{x} is not invertible\}$ and $I_{2} = \{i \in I : x_{i}x_{i}^{x} is not invertible\}$. Then $I = I_{1} \cup I_{2}$ and hence at least one of I_{1} and I_{2} is cofinal in I.

Without loss of generality, we assume that I_{1} is cofinal in I. But then $(x_{i})_{i \in I_{1}}$ is a subnet of $(x_{i})_{i \in I}$. Thus $(x_{i}x_{i}^{x})_{i \in I}$ is a net in E, which converges to $x^{x}x$, showing that $x^{x}x \in E$. Thus $x^{x}x \in A^{-1}$; so $x \in A^{-1}$. Thus the set of all singular elements of A is closed, i.e., A^{-1} is open and hence A is an \mathbb{Q}-algebra.

(2) As in the proof of (1), each $M \in \mathbb{R}$ is contained in $b(A)$ and so, each maximal commutative subalgebra of $b(A)$ is finite dimensional. Thus $b(A)$ is finite dimensional. Hence, by the denseness of $b(A)$ in A, $A = b(A)$ is finite dimensional. This completes the proof.

1.5. Example

The following example shows that there exists a complete \mathcal{L}-algebra A, in which, for each $h = h^{x} \in A$, the algebra generated by h is C^{*}-equivalent but A is not a pro-C^{*}-algebra.

Example 1.5.1. Let A be the algebra of all continuous functions on \mathbb{R} with compact support, with the finest locally convex topology on A, for which the inclusion mappings
\(\text{id: } A \rightarrow A \) become continuous, where \(A_n = \{ f \in A: \text{supp}(f) \subseteq [-n, n] \}, \ (n = 1, 2, \ldots) \). The topology of \(A_n \) is given by the norm \(\| f \|_n = \sup \{|f(t)| : t \in [-n, n]\} \). In fact, \(A \) is a complete local algebra with a local base at 0 consisting of idempotent sets of the form \(B(\{r_n\}) = \{ f \in A : \| f \|_n < r_n, \ n = 1, 2, \ldots \} \), where \((r_n) \) is a non-decreasing sequence of positive real numbers [61]. \(A \) is not a pro-\(C^* \)-algebra as \(A \) is a \(\mathbb{Q} \)-algebra which is not normable [61] and a \(\mathbb{Q} \) pro-\(C^* \)-algebra must be a \(C^* \)-algebra [62, Proposition 1.14].

1.6. The bounded part

As a byproduct of all that we have developed so far, we obtain certain description of the bounded part of a pro-\(C^* \)-algebra \(A \).

Proposition 1.6.1. Let \(A \) be a pro-\(C^* \)-algebra.

1. \(b(A) = \{ x \in A : V(A, S(A), x) \text{ is bounded} \} \).

2. \(b(A) = \{ \lambda x : \lambda \in \mathbb{C} \text{ and } f(x^*x) \leq f(1) \text{ for all } f \in P(A) \} \).

3. \(b(A) = \bigcup \{ A(B) : B \in \mathcal{B}(\tau) \} \).

Proof. \(1 \) By Proposition 0.1.15(3), \(S(A) \) is directed. So, by Definition 1.1.2, \(b(A) = \{ x \in A : \sup p(x) < \infty \} = A(S(S(A))) \).

\(= B_{\mathcal{S}(A)} = \{ x \in A : V(A, S(A), x) \text{ is bounded} \} \).
(2) It can be seen from the proof of Theorem 1.3.2, that $S = \{ x \in A : f(x^*x) \leq f(1) \text{ for all } f \in P(A) \}$ is the greatest member of $\mathcal{B}(\tau)$ and that $(A(S), |\cdot|_S)$ is a C^*-algebra which is dense in A. Since $S = \{ x \in A(S) : |x|_S \leq 1 \}$ is closed in A, the result follows by taking $K = S$ in Theorem 1.1.9.

(3) For $B \in \mathcal{B}(\tau)$, $A(B) \subset A(S) = b(A)$ and hence $\bigcup \{ A(B) : B \in \mathcal{B}(\tau) \} \subset A(S) = b(A)$. Since $S \in \mathcal{B}(\tau)$, the reverse inclusion follows.

Proposition 1.6.2. Let A be a pro-C^*-algebra and $P \in \mathcal{C}_1(A)$. Then $b(A)$ is the inverse limit (in the category \mathcal{C}_1^*) of the inverse system $\{ A_p : p \in P \}$ with the bonding maps $\{ x_{p,q} : p \geq q \}$.

Proof. Let $\chi_p : A \rightarrow A_p$ be the usual projection map and $\phi_p = \chi_p |_{b(A)}$ for each $p \in P$. Let \mathfrak{S}_p be the category associated with the inverse system in \mathcal{C}_1^*. More explicitly, the objects of \mathfrak{S}_p are of the form $(B, \{ h_p \})$, where B is a C^*-algebra and $h_p : B \rightarrow A_p$ are continuous homomorphisms for all $p \in P$ such that the following diagram commutes for each pair (p, q) of seminorms in P with $p \geq q$.

![Diagram](image)

(Figure 6)
Thus \((b(A), \{\phi_p\})\) is an object of \(\mathcal{F}_p\). Now, let \((B, \{h_p\})\) be an object of \(\mathcal{F}_p\). So, \(B\) is a \(C^*\)-algebra and for each \(p \in P\), \(h_p : B \to A\) is a \(^*\)homomorphism such that the above diagram commutes. But every \(C^*\)-algebra is a pro-\(C^*\)-algebra and hence \(B\) is a pro-\(C^*\)-algebra with the family \(\{h_p\}_p\) of \(^*\)homomorphisms \(h_p : B \to A\) such that the above diagram commutes. Since \(A = \varprojlim A_p\), there exists a unique \(^*\)homomorphism \(\psi : B \to A\) such that the following diagram commutes.

![Diagram](image)

(Figure 7)

Thus we need only to show that \(\psi(B) \subseteq b(A)\). Let \(b \in B\). Then for \(p \in P\), \(p(\psi(b)) = ||\chi_p(\psi(b))||_p = ||h_p(b)||_p \leq ||b||\). The last inequality holds because \(h_p\), being a \(^*\)homomorphism between two \(C^*\)-algebras, is norm-decreasing. Thus taking supremum on the left hand side of the above over all \(p \in P\), we get \(||\psi(b)||_\infty \leq ||b||\), showing that \(\psi(B) \subseteq b(A)\). This completes the proof.