TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>NEED FOR BETTER MANAGEMENT OF CHROMIUM</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>CONCEPT OF TANNING</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>CHROME TANNING : A REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Relevant aqueous chemistry of chromium</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Chrome tanning practices</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Tanning in fresh bath</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Tanning in pickling bath</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Float less or less - float tanning</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>FACTORS INFLUENCING CHROME TANNING</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>CURRENT APPROACHES FOR MANAGEMENT OF CHROMIUM IN TANNERIES</td>
<td>12</td>
</tr>
<tr>
<td>1.5.1</td>
<td>High chrome exhaustion techniques</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Low float processing</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1.2</td>
<td>Increased final temperature</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1.3</td>
<td>Controlled basification</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1.4</td>
<td>Masking of tanning salt</td>
<td>15</td>
</tr>
</tbody>
</table>
1.5.1.5 Reduced chromium input 17
1.5.1.6 Use of exhaust aids 18
1.5.1.7 High exhaust - tanning methods 19
1.5.2 Recycling techniques 19
1.5.3 Recovery and reuse methods 21
1.5.4 Alternative tanning materials and methods 22
1.5.4.1 Combination tannages 22
1.5.4.2 Closed-loop alutan BCS combination tanning system 23
1.6 AFTER TREATMENT METHODOLOGIES FOR CHROMIUM 23
1.7 NEED FOR FURTHER STUDIES IN CHROME TANNING 24
1.8 SCOPE AND OBJECTIVE OF THE PRESENT INVESTIGATION 26

2 STUDIES ON EXISTING CHROME TANNING METHODOLOGY AND DEVELOPMENT OF A NEW TANNING SYSTEM 27
2.1 CHROME TANNING : CURRENT PRACTICE 27
2.2 TWO-STAGE TANNING - A NEW TANNING CONCEPT. 28
2.3 CRITERIA FOR ASSESSMENT OF THE TANNING METHODS
 2.3.1 Thermal analysis 28
 2.3.2 Chemical analysis 30
 2.3.3 Chromatographic analysis 31
2.4 EXPERIMENTAL 31
2.4.1 Tanning studies
 2.4.1.1 Preparation of pickled pelts 31
 2.4.1.2 Tanning trials with varying quantities of BCS 32
 2.4.1.2.1 Tanning trials by existing process methodology 32
 2.4.1.2.2 Tanning trials by the two stage tanning system 33
 2.4.2 Thermal analysis of wet blue 34
 2.4.3 Chemical analysis of wet blue 34
 2.4.3.1 Estimation of chromium in spent solutions 34
 2.4.3.1.1 Alkaline hydrogenperoxide method 35
 2.4.3.1.2 Acid digestion method 35
 2.4.3.2 Estimation of sulfate in BCS and spent solutions 36
 2.4.3.3 Moisture determination in leather 36
 2.4.3.4 Estimation of hide substance 36
 2.4.3.5 Estimation of chromium content of leather 37
 2.4.3.6 Determination of basicity of BCS and first stage spent liquor 37
 2.4.4 Species seperation studies in BCS and spent tanning solutions 38

2.5 RESULTS AND DISCUSSION 38
 2.5.1 Uptake of chromium 38
 2.5.2 Thermal stability 46
 2.5.3 Chromium distribution in wet blue 63

2.6 IMPLICATION OF RESULTS 65
3 STUDIES ON CHROMIUM DISCHARGES IN SPENT LIQUORS OF TANNING AND POST TANNING OPERATIONS

3.1 INTRODUCTION

3.2 EXPERIMENTAL

3.2.1 Chromium discharges in spent tan liquors

3.2.2 Chromium discharges in post tanning operations

3.2.2.1 Without rechrome tanning

3.2.2.2 With rechrome tanning

3.2.3 Approaches for minimizing chromium discharges in tanning

3.3 RESULTS AND DISCUSSIONS

3.3.1 Chromium present in the spent tan liquors

3.3.2 Chromium discharges in the spent liquors of post tanning operations

3.3.3 Optimisation studies in two stage chrome tanning

3.3.3.1 Variation of pH in first stage of tanning

3.3.3.2 Variation of Cr$_2$O$_3$ to formate ratio

3.3.3.3 Influence of basification pH on uptake of chromium

3.4 IMPLICATION OF RESULTS

4 STUDIES ON ISO-ELECTRIC POINT OF CHROME-COLLAGEN COMPOUNDS

4.1 ISO-ELECTRIC POINT AND ITS SIGNIFICANCE

4.1.1 Electrophoretic method
4.1.2 Electrokinetic method 90
4.1.3 Dyestuff method 91

4.2 EXPERIMENTAL 91
4.2.1 Choice of the buffer 92
4.2.2 Choice of dyestuffs 93
4.2.3 Optimization of dye concentration - hide powder ratio 94
4.2.4 Methodology adopted 94
4.2.5 Evaluation of the method 95
4.2.6 Determination of iso electric point of chrome tanned hide powder 99

4.3 RESULTS AND DISCUSSIONS 99
4.4 IMPLICATION OF RESULTS 104

5 STUDIES ON RECYCLING OF CHROME TANNING AND RECHROME TANNING LIQUORS 105

5.1 INTRODUCTION 105
5.1.1 Recycling studies in two stage tanning 106
5.1.1.1 Recycling of first stage liquor 106
5.1.1.2 Recycling of second stage liquor 106

5.2 EXTENSION OF TWO STAGE TANNING CONCEPT TO RECHROME TANNING 107

5.3 EXPERIMENTAL 108
5.3.1 Recycling studies for first stage liquor 108
5.3.1.1 Estimation of chromium, sulfate and chloride in spent liquors 108
5.3.2 Recycling of second stage liquor in picking 108
5.3.3 Process methodology adopted for recycling 109
5.3.3.1 Recycling with cow pelts 109
6.2.4.1 Tear strength 132
6.2.4.2 Grain crack strength 133
6.2.5 Physical assessment of leathers 133

6.3 RESULTS AND DISCUSSIONS 133
6.3.1 Zeta potential of the wet blue hide powders 133
6.3.2 Dyeing characteristics of the leather 134
6.3.3 Layerwise studies in dyeing 140
6.3.4 Strength characteristics 144
6.3.5 Chemical analysis of leathers 147
6.3.6 Physical assessment of leather 148

6.4 IMPLICATION OF RESULTS 149

7 SUMMARY AND CONCLUSION 150

A APPENDIX 153
A1 COST BENEFIT ANALYSIS 153
A1.1 Cost comparison of chemical input 153
A2.2 Cost comparison of material wastage 154

REFERENCES 156
VITAE 168