INDEX

ACKNOWLEDGEMENTS I-II
PREFACE III-VII

CHAPTER 1
EXISTING INFORMATION ABOUT GERMANIUM CHALCOGENIDES 1-32

1.1 INTRODUCTION 2
1.1.1 The Chalcogens 3
1.1.2 Chalcogenide Glasses 5
1.1.3 Materials Synthesis 10

1.2 CRYSTAL STRUCTURE AND STRUCTURAL PROPERTIES 14

1.3 OPTICAL PROPERTIES 17

1.4 MAGNETIC PROPERTIES 19

1.5 ELECTRICAL PROPERTIES 19

1.6 IMPORTANCE OF GeS AND GeSe SINGLE CRYSTALS. 23

REFERENCES 25

CHAPTER 2
GROWTH OF GeS$_x$Se$_{1-x}$ ($x= 0, 0.25, 0.5, 0.75, 1$) SINGLE CRYSTALS 33-54

2.1 INTRODUCTION 34

2.2 DIFFERENT METHODS FOR CRYSTAL GROWTH 36
2.2.1 Growth from vapour transport method 37
2.2.1.1 Chemical Vapour Transport (CVT) method 38
2.2.1.2 Direct Vapour Transport (DVT) method 43

2.3 DUAL ZONE HORIZONTAL FURNACE 44

2.4 AMPOULE PREPARATION 44

2.5 CLEANING PROCESS OF AMPOULE 46

2.6 SEALING OF AMPOULE 46

2.7 GROWTH OF GeS$_x$Se$_{1-x}$ ($x= 0, 0.25, 0.5, 0.75, 1$) SINGLE CRYSTALS 47
2.7.1 Charge Preparation 47
2.7.2 Crystal Growth 48

2.8 RESULT AND DISCUSSIONS 49

CONCLUSION 50

REFERENCES 51
CHAPTER 3

STRUCTURAL CHARACTERIZATIONS OF GeS\textsubscript{x}Se\textsubscript{1-x} (x= 0, 0.25, 0.5, 0.75, 1) SINGLE CRYSTAL. 55-96

3.1 INTRODUCTION 56
3.2 EXPERIMENTAL 56
3.2.1 Energy Dispersive Analysis of X-rays (EDAX) 56
3.2.1.1 Basic Principle and Experimental 56
3.2.1.2 Spectrometer 58
3.2.1.3 Recording 59
3.2.1.4 Quantitative Analysis 60
3.2.1.5 Instrumentation 60
3.3 ELECTRON DIFFRACTION 63
3.4 X-RAY POWDER DIFFRACTION (XRD) 66
3.4.1 X-ray Analysis 71
3.4.1.1 Lattice Parameter 71
3.4.1.2 Particle Size Determination 80
3.5 MICROSTRUCTURE ANALYSIS 83
3.5.1 Impurities and Foreign Particles 86
3.5.2 Growth Spirals 89
3.6 RESULT AND DISCUSSIONS 92
3.6 CONCLUSION 93
REFERENCES 94

CHAPTER 4

ELECTRICAL CHARACTERIZATIONS OF GeS\textsubscript{x}Se\textsubscript{1-x} (x= 0, 0.25, 0.5, 0.75, 1) SINGLE CRYSTAL. 97-186

4.1 INTRODUCTION 98
4.2 MEASUREMENTS OF TEMPERATURE DEPENDENT ELECTRICAL RESISTIVITY 98
4.2.1 Basic Principle and Experimental Procedure 98
4.2.2 High Temperature Electrical resistivity Measurement Perpendicular to c- axis (Along to the Basal Plane) 99
4.2.2.1 Result and Discussions 101
4.2.3 High Temperature Electrical Resistivity Measurement Parallel to c- axis (Normal to the basal Plane) 107
4.2.3.1 Basic principle and experimental procedure 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.2</td>
<td>Result and Discussion</td>
<td>107</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Anisotropy</td>
<td>114</td>
</tr>
<tr>
<td>4.3</td>
<td>HALL EFFECT MEASUREMENTS</td>
<td>117</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Basic Principle and Experimental</td>
<td>118</td>
</tr>
<tr>
<td>4.3.2</td>
<td>van der Pauw Resistivity Measurements</td>
<td>120</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Experimental Procedure</td>
<td>124</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Result and Discussions</td>
<td>125</td>
</tr>
<tr>
<td>4.4</td>
<td>HIGH PRESSURE MEASUREMENTS</td>
<td>147</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Practical Methods of Pressure Generation</td>
<td>148</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Bridgeman Anvils</td>
<td>150</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Resistance Measurement Using Bridgeman Anvil Cell</td>
<td>152</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Result and Discussions</td>
<td>154</td>
</tr>
<tr>
<td>4.5</td>
<td>MEASUREMENT OF DIELECTRIC PROPERTIES</td>
<td>158</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Introduction</td>
<td>158</td>
</tr>
<tr>
<td>4.5.2</td>
<td>High Temperature LCR Measurement Setup</td>
<td>158</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Experimental Details</td>
<td>159</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Result and Discussions</td>
<td>160</td>
</tr>
<tr>
<td>4.6</td>
<td>THERMOELECTRIC POWER MEASUREMENTS (TEP)</td>
<td>173</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Experimental Procedure</td>
<td>176</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Result and Discussions</td>
<td>178</td>
</tr>
<tr>
<td>4.7</td>
<td>CONCLUSION</td>
<td>182</td>
</tr>
</tbody>
</table>

REFERENCES 184

CHAPTER 5

OPTICAL PROPERTIES OF GeS_xSe_{1-x} (x = 0, 0.25, 0.5, 0.75, 1) SINGLE CRYSTAL. 187-233

5.1 INTRODUCTION 188

5.2 UV-VIS-NIR SPECTROMETER 191

5.3 OPTICAL ANALYSIS 193

5.3.1 Fundamental Absorption 193

5.3.2 Direct Allowed Transitions 194

5.3.3 Direct Forbidden Transitions 195

5.3.4 Indirect Transition 196

5.4 EXPERIMENTAL TECHNIQUE 197
7.4.1 Short Circuit Current (I_{sc}) 268
7.4.2 Open Circuit Voltage (V_{oc}) 269
7.4.3 Photoconversion Efficiency ($\eta \%$) 269
7.4.4 Fill Factor (F.F.) 270
7.4.5 Quantum Efficiency 270
7.5 PHOTOCONVERSION CHARACTERISTICS OF GeS$_x$Se$_{1-x}$ (x= 0, 0.25, 0.5, 0.75) SINGLE CRYSTALS 270
7.6 MOTT – SCHOTTKY EVALUATIONS 285
7.6.1 Capacitance Measurements 285
7.6.2 Mott – Schottky Plots 286
7.6.3 Energy Band Location 288
7.7 CONCLUSION 291
REFERENCES 292

CHAPTER 8

CONCLUSION AND SCOPE FOR THE FUTURE WORK 293-298
8.1 INTRODUCTION 294
8.2 SUMMARY AND CONCLUSIONS 294
8.3 SCOPE FOR THE FUTURE WORK 297
† List of Publications in National/ International Journals 299
† Papers Presented at Conferences/Symposiums/Seminars/Workshops 301