List of Figures

Figure 3.1: Photographs of 1-2 shell and tube heat exchanger with accessories..... 17
Figure 3.2: A schematic diagram of the experimental set-up 18
Figure 3.3: Tube sheet triangular pitch of tubes .. 20
Figure 3.4: View of segmental baffles ... 21
Figure 3.5: Calibration plot between rotameter reading and actual discharge...... 25
Figure 3.6: Piping arrangement diagram for shell side two-phase flow 26
Figure 3.7: Piping arrangement diagram for tube side two-phase flow 26
Figure 3.8: Schematic diagram showing the temperatures used in calculation...... 31
Figure 3.9: Schematic diagram showing the temperatures using in calculation...... 34
Figure 4.1: Variation of the heat transfer coefficient with Reynolds number for different kerosene -water compositions in shell side 37
Figure 4.2: Variation of the heat transfer coefficient with Reynolds number for different diesel -water compositions in shell side 37
Figure 4.3: Variation of the heat transfer coefficient with Reynolds number for different nitrobenzene -water compositions in shell side 38
Figure 4.4: Variation of the heat transfer coefficient with Reynolds number for different octane -water compositions in shell side 38
Figure 4.5: Variation of the heat transfer coefficient with Reynolds number for different dodecane -water compositions in shell side................................. 39
Figure 4.6: Variation of the heat transfer coefficient with Reynolds number for different oleic acid -water compositions in shell side 39
Figure 4.7: Variation of the heat transfer coefficient with Reynolds number for different palm oil-water compositions in shell side 40

Figure 4.8: Variation of the heat transfer coefficient with Reynolds number for different kerosene-water compositions in tube side 41

Figure 4.9: Variation of the heat transfer coefficient with Reynolds number for different diesel-water compositions in tube side 41

Figure 4.10: Variation of the heat transfer coefficient with Reynolds number for different nitrobenzene-water compositions in tube side 42

Figure 4.11: Variation of the heat transfer coefficient with Reynolds number for different octane-water compositions in tube side 42

Figure 4.12: Variation of the heat transfer coefficient with Reynolds number for different dodecane-water compositions in tube side 43

Figure 4.13: Variation of the heat transfer coefficient with Reynolds number for different oleic acid-water compositions in tube side 43

Figure 4.14: Variation of the heat transfer coefficient with Reynolds number for different palm oil-water compositions in tube side 44

Figure 4.15: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure water in shell side .. 46

Figure 4.16: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure kerosene in shell side .. 46

Figure 4.17: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure diesel in shell side .. 47

Figure 4.18: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure nitrobenzene in shell side .. 47

Figure 4.19: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure octane in shell side .. 48
Figure 4.20: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure dodecane in shell side ... 48

Figure 4.21: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure oleic acid in shell side ... 49

Figure 4.22: Plot between Nusselt number and $Re^{0.55}Pr^{0.333}$ for pure palm oil in shell side ... 49

Figure 4.23: Plot between Nusselt number and $(RePr)^{0.333}$ for pure water in tube side ... 50

Figure 4.24: Plot between Nusselt number and $(RePr)^{0.333}$ for pure kerosene in tube side ... 51

Figure 4.25: Plot between Nusselt number and $(RePr)^{0.333}$ for pure diesel in tube side ... 51

Figure 4.26: Plot between Nusselt number and $(RePr)^{0.333}$ for pure nitrobenzene in tube side ... 52

Figure 4.27: Plot between Nusselt number and $(RePr)^{0.333}$ for pure octane in tube side ... 52

Figure 4.28: Plot between Nusselt number and $(RePr)^{0.333}$ for pure dodecane in tube side ... 53

Figure 4.29: Plot between Nusselt number and $(RePr)^{0.333}$ for pure oleic acid in tube side ... 53

Figure 4.30: Plot between Nusselt number and $(RePr)^{0.333}$ for pure palm oil in tube side ... 54

Figure 4.31: Variation between Quality and Modified two-phase multiplier for kerosene-water system in shell side ... 56

Figure 4.32: Variation between Quality and Modified two-phase multiplier for diesel-water system in shell side ... 56

Figure 4.33: Variation between Quality and Modified two-phase multiplier for NB-water system in shell side ... 57
Figure 4.34: Variation between Quality and Modified two-phase multiplier for octane-water system in shell side ... 57

Figure 4.35: Variation between Quality and Modified two-phase multiplier for dodecane-water system in shell side ... 58

Figure 4.36: Variation between Quality and Modified two-phase multiplier for oleic acid-water system in shell side ... 58

Figure 4.37: Variation between Quality and Modified two-phase multiplier for palm oil-water system in shell side ... 59

Figure 4.38: Variation between Modified two-phase multiplier and Quality for kerosene-water system in tube side ... 60

Figure 4.39: Variation between Modified two-phase multiplier and Quality for diesel-water system in tube side ... 60

Figure 4.40: Variation between Modified two-phase multiplier and Quality for NB-water system in tube side ... 61

Figure 4.41: Variation between Modified two-phase multiplier and Quality for octane-water system in tube side ... 61

Figure 4.42: Variation between Modified two-phase multiplier and Quality for dodecane-water system in tube side ... 62

Figure 4.43: Variation between Modified two-phase multiplier and Quality for oleic acid-water system in tube side ... 62

Figure 4.44: Variation between Modified two-phase multiplier and Quality for palm oil-water system in tube side ... 63

Figure 4.45: Variation between Quality and L-M parameter for seven liquid-water systems in shell side ... 64

Figure 4.46: Variation between L-M parameter and Quality for seven liquid-water systems in tube side ... 65

Figure 4.47: Variation between L-M parameter and Modified two-phase multiplier for kerosene-water system in shell side ... 66
Figure 4.48: Variation between L-M parameter and Modified two-phase multiplier for diesel-water system in shell side ... 67

Figure 4.49: Variation between L-M parameter and Modified two-phase multiplier for NB-water system in shell side .. 67

Figure 4.50: Variation between L-M parameter and Modified two-phase multiplier for octane-water system in shell side .. 68

Figure 4.51: Variation between L-M parameter and Modified two-phase multiplier for dodecane-water system in shell side .. 68

Figure 4.52: Variation between L-M parameter and Modified two-phase multiplier for oleic acid-water system in shell side .. 69

Figure 4.53: Variation between L-M parameter and Modified two-phase multiplier for palm oil-water system in shell side .. 69

Figure 4.54: Variation between Experimental and Calculated modified two-phase multiplier based on the developed two-phase correlation in shell side 70

Figure 4.55: Variation between L-M parameter and Modified two-phase multiplier for kerosene-water system in tube side ... 71

Figure 4.56: Variation between L-M parameter and Modified two-phase multiplier for diesel-water system in tube side ... 72

Figure 4.57: Variation between L-M parameter and Modified two-phase multiplier for NB-water system in tube side ... 72

Figure 4.58: Variation between L-M parameter and Modified two-phase multiplier for octane-water system in tube side ... 73

Figure 4.59: Variation between L-M parameter and Modified two-phase multiplier for dodecane-water system in tube side ... 73

Figure 4.60: Variation between L-M parameter and Modified two-phase multiplier for oleic acid-water system in tube side ... 74

Figure 4.61: Variation between L-M parameter and Modified two-phase multiplier for palm oil-water system in tube side ... 74
Figure 4.62: Variation between experimental and calculated modified two-phase multiplier based on the developed two-phase correlation in tube side 75

Figure 4.63: Variation between experimental and calculated two-phase Nusselt number based on the developed two-phase correlation in shell side ... 78

Figure 4.64: Variation between experimental and calculated two-phase Nusselt number based on the developed two-phase correlation in tube side ... 79

Figure 4.65: Influence of Reynolds number on Thermal effectiveness of kerosene-water system supplied in the shell side. .. 81

Figure 4.66: Influence of Reynolds number on Thermal effectiveness of diesel-water system supplied in the shell side. .. 82

Figure 4.67: Influence of Reynolds number on Thermal effectiveness of palm oil-water system supplied in the shell side. .. 82

Figure 4.68: Influence of Reynolds number on Thermal effectiveness of oleic acid-water supplied in the shell side.. 83

Figure 4.69: Influence of Reynolds number on Thermal effectiveness of NB-water supplied in the shell side. .. 83

Figure 4.70: Influence of Reynolds number on Thermal effectiveness of dodecane-water supplied in the shell side.. 84

Figure 4.71: Influence of Reynolds number on Thermal effectiveness of octane-water supplied in the shell side.. 84

Figure 4.72: Influence of Reynolds number on Thermal effectiveness of kerosene-water supplied in the tube side.. 85

Figure 4.73: Influence of Reynolds number on Thermal effectiveness of diesel-water supplied in the tube side.. 86

Figure 4.74: Influence of Reynolds number on Thermal effectiveness of palm oil-water supplied in the tube side.. 86

Figure 4.75: Influence of Reynolds number on Thermal effectiveness of oleic acid-water supplied in the tube side.. 87
Figure 4.76: Influence of Reynolds number on Thermal effectiveness of NB-water supplied in the tube side ... 87

Figure 4.77: Influence of Reynolds number on Thermal effectiveness of dodecane-water supplied in the tube side ... 88

Figure 4.78: Influence of Reynolds number on Thermal effectiveness of octane-water supplied in the tube side ... 88

Figure 4.79: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of kerosene-water system supplied in the shell side 89

Figure 4.80: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of diesel-water system supplied in the shell side 90

Figure 4.81: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of palm oil-water system supplied in the shell side 90

Figure 4.82: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of oleic acid-water system supplied in the shell side 91

Figure 4.83: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of NB-water system supplied in the shell side 91

Figure 4.84: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of dodecane-water system supplied in the shell side 92

Figure 4.85: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of octane-water system supplied in the shell side 92

Figure 4.86: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of kerosene-water system supplied in the tube side 93

Figure 4.87: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of diesel-water system supplied in the tube side 94

Figure 4.88: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of palm oil-water system supplied in the tube side 94

Figure 4.89: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of oleic acid-water system supplied in the tube side 95
Figure 4.90: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of NB-water system supplied in the tube side 95

Figure 4.91: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of dodecane-water system supplied in the tube side 96

Figure 4.92: Influence of Shell side to tube side velocity ratio on Thermal effectiveness of octane-water system supplied in the tube side 96

Figure 4.93: Variation between experimental and predicted values of thermal effectiveness for different compositions of liquid-liquid systems in shell side ... 101

Figure 4.94: Variation between experimental and predicted values of thermal effectiveness for different compositions of liquid-liquid systems in tube side ... 101